Units - Bitcoin Wiki

Filecoin | Development Status and Mining Progress

Author: Gamals Ahmed, CoinEx Business Ambassador
https://preview.redd.it/5bqakdqgl3g51.jpg?width=865&format=pjpg&auto=webp&s=b709794863977eb6554e3919b9e00ca750e3e704
A decentralized storage network that transforms cloud storage into an account market. Miners obtain the integrity of the original protocol by providing data storage and / or retrieval. On the contrary, customers pay miners to store or distribute data and retrieve it.
Filecoin announced, that there will be more delays before its main network is officially launched.
Filecoin developers postponed the release date of their main network to late July to late August 2020.
As mentioned in a recent announcement, the Filecoin team said that the initiative completed the first round of the internal protocol security audit. Platform developers claim that the results of the review showed that they need to make several changes to the protocol’s code base before performing the second stage of the software testing process.
Created by Protocol Labs, Filecoin was developed using File System (IPFS), which is a peer-to-peer data storage network. Filecoin will allow users to trade storage space in an open and decentralized market.
Filecoin developers implemented one of the largest cryptocurrency sales in 2017. They have privately obtained over $ 200 million from professional or accredited investors, including many institutional investors.
The main network was slated to launch last month, but in February 2020, the Philly Queen development team delayed the release of the main network between July 15 and July 17, 2020.
They claimed that the outbreak of the Coronavirus (COVID-19) in China was the main cause of the delay. The developers now say that they need more time to solve the problems found during a recent codecase audit.
The Filecoin team noted the following:
“We have drafted a number of protocol changes to ensure that building our major network launch is safe and economically sound.” The project developers will add them to two different implementations of Filecoin (Lotus and go-filecoin) in the coming weeks.
Filecoin developers conducted a survey to allow platform community members to cast their votes on three different launch dates for Testnet Phase 2 and mainnet.
The team reported that the community gave their votes. Based on the vote results, the Filecoin team announced a “conservative” estimate that the second phase of the network test should begin by May 11, 2020. The main Filecoin network may be launched sometime between July 20 and August 21, 2020.
The updates to the project can be found on the Filecoin Road Map.
Filecoin developers stated:
“This option will make us get the most important protocol changes first, and then implement the rest as protocol updates during testnet.” Filecoin is back down from the final test stage.
Another filecoin decentralized storage network provider launched its catalytic test network, the final stage of the storage network test that supports the blockchain.
In a blog post on her website, Filecoin said she will postpone the last test round until August. The company also announced a calibration period from July 20 to August 3 to allow miners to test their mining settings and get an idea of how competition conditions affected their rewards.
Filecoin had announced earlier last month that the catalytic testnet test would precede its flagship launch. The delay in the final test also means that the company has returned the main launch window between August 31 and September 21.
Despite the lack of clear incentives for miners and multiple delays, Filecoin has succeeded in attracting huge interest, especially in China. Investors remained highly speculating on the network’s mining hardware and its premium price.
Mining in Filecoin
In most blockchain protocols, “miners” are network participants who do the work necessary to promote and maintain the blockchain. To provide these services, miners are compensated in the original cryptocurrency.
Mining in Filecoin works completely differently — instead of contributing to computational power, miners contribute storage capacity to use for dealing with customers looking to store data.
Filecoin will contain several types of miners:
Storage miners responsible for storing files and data on the network. Miners retrieval, responsible for providing quick tubes for file recovery. Miners repair to be carried out.
Storage miners are the heart of the network. They earn Filecoin by storing data for clients, and computerizing cipher directories to check storage over time. The probability of earning the reward reward and transaction fees is proportional to the amount of storage that the Miner contributes to the Filecoin network, not the hash power.
Retriever miners are the veins of the network. They earn Filecoin by winning bids and mining fees for a specific file, which is determined by the market value of the said file size. Miners bandwidth and recovery / initial transaction response time will determine its ability to close recovery deals on the network.
The maximum bandwidth of the recovery miners will determine the total amount of deals that it can enter into.
In the current implementation, the focus is mostly on storage miners, who sell storage capacity for FIL.

Hardware recommendations

The current system specifications recommended for running the miner are:
Compared to the hardware requirements for running a validity checker, these standards are much higher — although they definitely deserve it. Since these will not increase in the presumed future, the money spent on Filecoin mining hardware will provide users with many years of reliable service, and they pay themselves many times. Think of investing as a small business for cloud storage. To launch a model on the current data hosting model, it will cost millions of dollars in infrastructure and logistics to get started. With Filecoin, you can do the same for a few thousand dollars.
Proceed to mining
Deals are the primary function of the Filecoin network, and it represents an agreement between a client and miners for a “storage” contract.
Once the customer decides to have a miner to store based on the available capacity, duration and price required, he secures sufficient funds in a linked portfolio to cover the total cost of the deal. The deal is then published once the mine accepts the storage agreement. By default, all Filecoin miners are set to automatically accept any deal that meets their criteria, although this can be disabled for miners who prefer to organize their deals manually.
After the deal is published, the customer prepares the data for storage and then transfers it to the miner. Upon receiving all the data, the miner fills in the data in a sector, closes it, and begins to provide proofs to the chain. Once the first confirmation is obtained, the customer can make sure the data is stored correctly, and the deal has officially started.
Throughout the deal, the miner provides continuous proofs to the chain. Clients gradually pay with money they previously closed. If there is missing or late evidence, the miner is punished. More information about this can be found in the Runtime, Cut and Penalties section of this page.
At Filecoin, miners earn two different types of rewards for their efforts: storage fees and reward prevention.
Storage fees are the fees that customers pay regularly after reaching a deal, in exchange for storing data. This fee is automatically deposited into the withdrawal portfolio associated with miners while they continue to perform their duties over time, and is locked for a short period upon receipt.
Block rewards are large sums given to miners calculated on a new block. Unlike storage fees, these rewards do not come from a linked customer; Instead, the new FIL “prints” the network as an inflationary and incentive measure for miners to develop the chain. All active miners on the network have a chance to get a block bonus, their chance to be directly proportional to the amount of storage space that is currently being contributed to the network.
Duration of operation, cutting and penalties
“Slashing” is a feature found in most blockchain protocols, and is used to punish miners who fail to provide reliable uptime or act maliciously against the network.
In Filecoin, miners are susceptible to two different types of cut: storage error cut, unanimously reduce error.
Storage Error Reduction is a term used to include a wider range of penalties, including error fees, sector penalties, and termination fees. Miners must pay these penalties if they fail to provide reliability of the sector or decide to leave the network voluntarily.
An error fee is a penalty that a miner incurs for each non-working day. Sector punishment: A penalty incurred by a miner of a disrupted sector for which no error was reported before the WindowPoSt inspection.
The sector will pay an error fee after the penalty of the sector once the error is discovered.
Termination Fee: A penalty that a miner incurs when a sector is voluntary or involuntarily terminated and removed from the network.
Cutting consensus error is the penalty that a miner incurs for committing consensus errors. This punishment applies to miners who have acted maliciously against the network consensus function.
Filecoin miners
Eight of the top 10 Felticoin miners are Chinese investors or companies, according to the blockchain explorer, while more companies are selling cloud mining contracts and distributed file sharing system hardware. CoinDesk’s Wolfe Chao wrote: “China’s craze for Filecoin may have been largely related to the long-standing popularity of crypto mining in the country overall, which is home to about 65% of the computing power on Bitcoin at discretion.”
With Filecoin approaching the launch of the mainnet blocknet — after several delays since the $ 200 million increase in 2017 — Chinese investors are once again speculating strongly about network mining devices and their premium prices.
Since Protocol Labs, the company behind Filecoin, released its “Test Incentives” program on June 9 that was scheduled to start in a week’s time, more than a dozen Chinese companies have started selling cloud mining contracts and hardware — despite important details such as economics Mining incentives on the main network are still endless.
Sales volumes to date for each of these companies can range from half a million to tens of millions of dollars, according to self-reported data on these platforms that CoinDesk has watched and interviews with several mining hardware manufacturers.
Filecoin’s goal is to build a distributed storage network with token rewards to spur storage hosting as a way to drive wider adoption. Protocol Labs launched a test network in December 2019. But the tokens mined in the testing environment so far are not representative of the true silicon coin that can be traded when the main network is turned on. Moreover, the mining incentive economics on testnet do not represent how final block rewards will be available on the main network.
However, data from Blockecoin’s blocknetin testnet explorers show that eight out of 10 miners with the most effective mining force on testnet are currently Chinese miners.
These eight miners have about 15 petabytes (PB) of effective storage mining power, accounting for more than 85% of the total test of 17.9 petable. For the context, 1 petabyte of hard disk storage = 1000 terabytes (terabytes) = 1 million gigabytes (GB).
Filecoin craze in China may be closely related to the long-standing popularity of crypt mining in the country overall, which is home to about 65% of the computing power on Bitcoin by estimation. In addition, there has been a lot of hype in China about foreign exchange mining since 2018, as companies promote all types of devices when the network is still in development.
“Encryption mining has always been popular in China,” said Andy Tien, co-founder of 1475, one of several mining hardware manufacturers in Philquin supported by prominent Chinese video indicators such as Fenbushi and Hashkey Capital.
“Even though the Velikoyen mining process is more technologically sophisticated, the idea of mining using hard drives instead of specialized machines like Bitcoin ASIC may be a lot easier for retailers to understand,” he said.
Meanwhile, according to Feixiaohao, a Chinese service comparable to CoinMarketCap, nearly 50 Chinese crypto exchanges are often somewhat unknown with some of the more well-known exchanges including Gate.io and Biki — have listed trading pairs for Filecoin currency contracts for USDT.
In bitcoin mining, at the current difficulty level, one segment per second (TH / s) fragmentation rate is expected to generate around 0.000008 BTC within 24 hours. The higher the number of TH / s, the greater the number of bitcoins it should be able to produce proportionately. But in Filecoin, the efficient mining force of miners depends on the amount of data stamped on the hard drive, not the total size of the hard drive.
To close data in the hard drive, the Filecoin miner still needs processing power, i.e. CPU or GPU as well as RAM. More powerful processors with improved software can confine data to the hard drive more quickly, so miners can combine more efficient mining energy faster on a given day.
As of this stage, there appears to be no transparent way at the network level for retail investors to see how much of the purchased hard disk drive was purchased which actually represents an effective mining force.
The U.S.-based Labs Protocol was behind Filecoin’s initial coin offer for 2017, which raised an astonishing $ 200 million.
This was in addition to a $ 50 million increase in private investment supported by notable venture capital projects including Sequoia, Anderson Horowitz and Union Square Ventures. CoinDk’s parent company, CoinDk, has also invested in Protocol Labs.
After rounds of delay, Protocol Protocols said in September 2019 that a testnet launch would be available around December 2019 and the main network would be rolled out in the first quarter of 2020.
The test started as promised, but the main network has been delayed again and is now expected to launch in August 2020. What is Filecoin mining process?
Filecoin mainly consists of three parts: the storage market (the chain), the blockecin Filecoin, and the search market (under the chain). Storage and research market in series and series respectively for security and efficiency. For users, the storage frequency is relatively low, and the security requirements are relatively high, so the storage process is placed on the chain. The retrieval frequency is much higher than the storage frequency when there is a certain amount of data. Given the performance problem in processing data on the chain, the retrieval process under the chain is performed. In order to solve the security issue of payment in the retrieval process, Filecoin adopts the micro-payment strategy. In simple terms, the process is to split the document into several copies, and every time the user gets a portion of the data, the corresponding fee is paid. Types of mines corresponding to Filecoin’s two major markets are miners and warehousers, among whom miners are primarily responsible for storing data and block packages, while miners are primarily responsible for data query. After the stable operation of the major Filecoin network in the future, the mining operator will be introduced, who is the main responsible for data maintenance.
In the initial release of Filecoin, the request matching mechanism was not implemented in the storage market and retrieval market, but the takeover mechanism was adopted. The three main parts of Filecoin correspond to three processes, namely the stored procedure, retrieval process, packaging and reward process. The following figure shows the simplified process and the income of the miners:
The Filecoin mining process is much more complicated, and the important factor in determining the previous mining profit is efficient storage. Effective storage is a key feature that distinguishes Filecoin from other decentralized storage projects. In Filecoin’s EC consensus, effective storage is similar to interest in PoS, which determines the likelihood that a miner will get the right to fill, that is, the proportion of miners effectively stored in the entire network is proportional to final mining revenue.
It is also possible to obtain higher effective storage under the same hardware conditions by improving the mining algorithm. However, the current increase in the number of benefits that can be achieved by improving the algorithm is still unknown.
It seeks to promote mining using Filecoin Discover
Filecoin announced Filecoin Discover — a step to encourage miners to join the Filecoin network. According to the company, Filecoin Discover is “an ever-growing catalog of numerous petabytes of public data covering literature, science, art, and history.” Miners interested in sharing can choose which data sets they want to store, and receive that data on a drive at a cost. In exchange for storing this verified data, miners will earn additional Filecoin above the regular block rewards for storing data. Includes the current catalog of open source data sets; ENCODE, 1000 Genomes, Project Gutenberg, Berkley Self-driving data, more projects, and datasets are added every day.
Ian Darrow, Head of Operations at Filecoin, commented on the announcement:
“Over 2.5 quintillion bytes of data are created every day. This data includes 294 billion emails, 500 million tweets and 64 billion messages on social media. But it is also climatology reports, disease tracking maps, connected vehicle coordinates and much more. It is extremely important that we maintain data that will serve as the backbone for future research and discovery”.
Miners who choose to participate in Filecoin Discover may receive hard drives pre-loaded with verified data, as well as setup and maintenance instructions, depending on the company. The Filecoin team will also host the Slack (fil-Discover-support) channel where miners can learn more.
Filecoin got its fair share of obstacles along the way. Last month Filecoin announced a further delay before its main network was officially launched — after years of raising funds.
In late July QEBR (OTC: QEBR) announced that it had ceded ownership of two subsidiaries in order to focus all of the company’s resources on building blockchain-based mining operations.
The QEBR technology team previously announced that it has proven its system as a Filecoin node valid with CPU, GPU, bandwidth and storage compatibility that meets all IPFS guidelines. The QEBR test system is connected to the main Filecoin blockchain and the already mined filecoin coin has already been tested.
“The disclosure of Sheen Boom and Jihye will allow our team to focus only on the upcoming global launch of Filecoin. QEBR branch, Shenzhen DZD Digital Technology Ltd. (“ DZD “), has a strong background in blockchain development, extraction Data, data acquisition, data processing, data technology research. We strongly believe Filecoin has the potential to be a leading blockchain-based cryptocurrency and will make every effort to make QEBR an important player when Mainecoin mainnet will be launched soon”.
IPFS and Filecoin
Filecoin and IPFS are complementary protocols for storing and sharing data in a decentralized network. While users are not required to use Filecoin and IPFS together, the two combined are working to resolve major failures in the current web infrastructure.
IPFS
It is an open source protocol that allows users to store and transmit verifiable data with each other. IPFS users insist on data on the network by installing it on their own device, to a third-party cloud service (known as Pinning Services), or through community-oriented systems where a group of individual IPFS users share resources to ensure the content stays live.
The lack of an integrated catalytic mechanism is the challenge Filecoin hopes to solve by allowing users to catalyze long-term distributed storage at competitive prices through the storage contract market, while maintaining the efficiency and flexibility that the IPFS network provides.
Using IPFS
In IPFS, the data is hosted by the required data installation nodes. For data to persist while the user node is offline, users must either rely on their other peers to install their data voluntarily or use a central install service to store data.
Peer-to-peer reliance caching data may be a good thing as one or multiple organizations share common files on an internal network, or where strong social contracts can be used to ensure continued hosting and preservation of content in the long run. Most users in an IPFS network use an installation service.
Using Filecoin
The last option is to install your data in a decentralized storage market, such as Filecoin. In Filecoin’s structure, customers make regular small payments to store data when a certain availability, while miners earn those payments by constantly checking the integrity of this data, storing it, and ensuring its quick recovery. This allows users to motivate Filecoin miners to ensure that their content will be live when it is needed, a distinct advantage of relying only on other network users as required using IPFS alone.
Filecoin, powered by IPFS
It is important to know that Filecoin is built on top of IPFS. Filecoin aims to be a very integrated and seamless storage market that takes advantage of the basic functions provided by IPFS, they are connected to each other, but can be implemented completely independently of each other. Users do not need to interact with Filecoin in order to use IPFS.
Some advantages of sharing Filecoin with IPFS:
Of all the decentralized storage projects, Filecoin is undoubtedly the most interested, and IPFS has been running stably for two years, fully demonstrating the strength of its core protocol.
Filecoin’s ability to obtain market share from traditional central storage depends on end-user experience and storage price. Currently, most Filecoin nodes are posted in the IDC room. Actual deployment and operation costs are not reduced compared to traditional central cloud storage, and the storage process is more complicated.
PoRep and PoSt, which has a large number of proofs of unknown operation, are required to cause the actual storage cost to be so, in the early days of the release of Filecoin. The actual cost of storing data may be higher than the cost of central cloud storage, but the initial storage node may reduce the storage price in order to obtain block rewards, which may result in the actual storage price lower than traditional central cloud storage.
In the long term, Filecoin still needs to take full advantage of its P2P storage, convert storage devices from specialization to civil use, and improve its algorithms to reduce storage costs without affecting user experience. The storage problem is an important problem to be solved in the blockchain field, so a large number of storage projects were presented at the 19th Web3 Summit. IPFS is an important part of Web3 visibility. Its development will affect the development of Web3 to some extent. Likewise, Web3 development somewhat determines the future of IPFS. Filecoin is an IPFS-based storage class project initiated by IPFS. There is no doubt that he is highly expected.
Resources :
  1. https://www.coindesk.com/filecoin-pushes-back-final-testing-phase-announces-calibration-period-for-miners
  2. https://docs.filecoin.io/mine/#types-of-miners https://www.nasdaq.com/articles/inside-the-craze-for-filecoin-crypto-mining-in-china-2020-07-12؟amp
  3. https://www.prnewswire.com/news-releases/qebr-streamlines-holdings-to-concentrate-on-filecoin-development-and-mining-301098731.html
  4. https://www.crowdfundinsider.com/2020/05/161200-filecoin-seeks-to-boost-mining-with-filecoin-discove
  5. https://zephyrnet.com/filecoin-seeks-to-boost-mining-with-filecoin-discove
  6. https://docs.filecoin.io/introduction/ipfs-and-filecoin/#filecoin-powered-by-ipfs
submitted by CoinEx_Institution to filecoin [link] [comments]

08-12 22:05 - 'Why Bitcoin Will Win: The Bearish Case for Ethereum' (self.Bitcoin) by /u/uncapslock removed from /r/Bitcoin within 207-217min

'''
Hi Everyone! If you were around for the 2017 bull cycle, you might remember me from:
[[link]6
With the advent of DeFi, I wanted to crystalize my thoughts on why Bitcoin will win in the end.

Why Bitcoin Will Win: The Bearish Case for Ethereum

Ethereum is the MySpace of decentralized finance. Hobbled together, scrappy, but provides an exciting glimpse into the future. We should be pleased with the new paradigms discovered through this experiment but should not expect it to be the de facto platform in a decade.
Ethereum has demonstrated intrinsic challenges that are insurmountable without an Ethereum 2. We have witnessed unauditability, scaling difficulties, centralization and high contract fees. Building second-layer solutions to make up for shortcomings is akin to patching cracks in the asphalt with duct tape.
In this piece, I’ll navigate why we should not confuse novelty of features for sustainable value, why Ethereum makes for a poor base layer, and what to expect in the decade ahead.
There will only be one base layer for digital scarcity of humanity and that is Bitcoin.

The “Bitcoin is money, Ethereum is apps” fallacy

There is a logical fallacy in arguing “Bitcoin is money, Ethereum is apps,” which draws a false equivalence between the value of money and apps. As any self-respecting financier knows, the value lies (quite literally) where wealth is stored.
“Applications are cheap. A store of wealth is expensive.”
Building applications is a solved problem.
We know how to recruit engineers, build organizations and assemble technical solutions. We have a bevy of technologies that provide affordances for user interfaces. We have best practices for effective engineering. We even have strategies for amplifying creativity during brainstorming.
The number of pages on CoinMarketCap.com is a testament to the commonality of applications.
What is not solved is building applications on top of a store of wealth.
In order to build applications on top of a store of wealth, you either appropriate an existing store of wealth and build on top of it (i.e. Plaid) or you build a new store of wealth (Bitcoin).
Building a digital store of wealth is so hard it has taken over half a century and is still not ready. The digital store of wealth is only ready when it stores a nontrivial portion portion of global wealth.
On August 11, 2020, MicroStrategy announced it had acquired 21,454 Bitcoin for $250 million. A single company bought the equivalent of all Bitcoin in Ethereum that day.
Building an application on Ethereum today is the worst of both worlds. It builds on a burgeoning new store of value with a tiny addressable market on top of a limited capacity network already showing strains.
The vast majority of global wealth is still outside of the system, waiting to designate a digital store of value.
Conceding that Bitcoin is the better store of value is conceding Bitcoin will be the disproportionate beneficiary of global wealth entering the system.

So where do applications fit in?

Imagine acquiring a bank. You are given a choice to either acquire the trillion dollars under management and no app or a smooth, slick app but not the financial assets.
It’s easier to make a new application where users are already present rather than move users to a new platform with an existing application. As we’ve seen in the previous section, most users will be on Bitcoin utilizing its value as a store of wealth.
“Applications will be built where wealth is stored.”
What we’ll see is the best ideas from current generation of DeFi applications (elastic supply, governance, fair distribution mechanisms, auditability) built into layer 2 solutions of Bitcoin that itself sits on top of multiple trillions of dollars of global wealth.
Why will this happen? Builders will note applications of value from the small pond of Ethereum and see a market opportunity to natively expose those features to the much larger accounts in Bitcoin, reaping proportionally higher revenue.

Why can’t we use Ethereum as a store of value?

“If native users of a platform are so important, why can’t we just use Ethereum as a store of value? After all, holders of Ethereum have seen much higher appreciation in value since its founding compared to Bitcoin.”
Here we refer back to the [“The Bullish Case for Bitcoin”]2 which lays out the core properties of money of which three critical areas Ethereum is weak against Bitcoin.

Verifiability

As we see in the indefatigable investigation by [Pierre Rochard]3 in his epic quest to audit Ethereum’s supply limit, verifying the total number of Ethereum is not a trivial task.
A number of supply adjustments had been made in node software instead of on-chain transactions, intermediate miner rewards calculated using uncles that are not finalized for a number of blocks, selfdestruct() that leaves ambiguity for token inactivity.
These factors make it impossible to have an objective measure without specifying an asterisk of the nuances appropriated for each method of calculation.
Lack of auditability makes Ethereum a nonstarter for firms desiring a store of value. Without an objective measure of supply comes an impossibility of assessing the value of your asset.
From measurement of the Ethereum supply through scripts, it has been hypothesized that there has been at least one inflation bug that has been exploited: [*[link]7

Scarcity

There is no set limit of Ethereum by design. From inception it was designed to be an inflationary currency which is essential as a utility token executing applications but is fatal for a store of value.
There is an ongoing effort to curtail Ethereum’s inflation to appease to its holders which will be to its detriment as use as an application platform.
This tension between being an appreciating digital asset and utilization as fuel is intrinsic to Ethereum and cannot be removed. When Ethereum prices go up by a factor of ten, only smart contracts that can provide commensurate proportional value will be viable.
“Using Ethereum as a store of value creates a perverse relationship with increasing contract fees that undermine its value as an application network.”
As the price rises further, we will see the majority of use cases today become priced out, adding platform risk where users will now need to worry whether they will be able to get their assets back out in the event of Ethereum appreciation.

Censorship Resistance

It is an open secret that Infura is the defacto backend for Ethereum. Running a full Ethereum node is known and accepted to be an arduous task with astronomical processor requirements.
This problem is getting worse, not better as the system struggles with transaction volume today, much less the several magnitudes of transactions needed in the coming decade.
The solution provided is running Ethereum 2 and implementing applications on a second layer of Ethereum. This shifts the conversation to if building a new base layer or building on a second layer is necessary, what benefit is there to retain Ethereum as a base layer?

A Look Back from 2030

When we look back to 2017–2021, we will remember this period as the primordial era of where creative entrepreneurs came together to experiment with the new paradigm of permission-less smart contracts.
We will see a meaningful portion of global wealth go into Bitcoin by 2024 raising assets under management to a trillion dollars. Companies will convert overseas holdings into Bitcoin to counter inflationary risk for sovereign currencies. Smaller nation-states will start to acquire a reserve of Bitcoin to counter dollar strength to pay off their dollar-denominated debt.
During this time, firms small and large will rush to build applications to service wealth stored in Bitcoin on layer 2 and layer 3 solutions. Many of these applications will be inspired by what is currently built on top of Ethereum but addressing a much larger market.
Through two more halvings by 2030, everyone will have a Bitcoin account providing both a store of value as well as a unified platform that provides the largest installed userbase for financial products. We'll be ending the decade with 10M per Bitcoin, (one magnitude increase each for the three halving periods: 2020-2024, 2024-2028, 2028-2032) with Bitcoin serving as the generational store of wealth for those with the foresight to stack sats and hodl.

Tips for Builders

You’re not late. In fact you’re incredibly early. We’re still building the store of value that will be the foundation to the financial apps that you’ll build. Ethereum is a nice environment for experimenting with new paradigms that are made possible through smart contracts.
But understand that the bulk of your future customers will be onboarding onto a different platform when they do arrive. There will be a bonanza period where we see thousands of companies and millions of retail users adopting Bitcoin.
It’ll be up to you to recognize the arbitrage opportunity to offer product features in native Bitcoin format to beat other products that must employ bridges to access wealth stored in Bitcoin.

About Me

For future writing, [you can follow me on Twitter at @uncapslock]5 .
This article is for information purposes only and is not intended to be investment advice.
'''
Why Bitcoin Will Win: The Bearish Case for Ethereum
Go1dfish undelete link
unreddit undelete link
Author: uncapslock
1: www.red*it.co***/Bi*coin/*om**n*s/6h4*1i/why_i*sol*_all_***e*h*reum_*oda**an*_convert*d_i*/ 2: medium.c*m/@*i*a*bo*apati/t*e*bu*l*sh*case-for-*it*oin*6ecc8*de*c* 3: tw*t*e**com/pierre_*o*hard 4: *w*tte*.***/GeistLight/st*tus/1*926*756*3801390** 5: t*itt**.*om/uncap**ock 6: ww**r**di**com*Bitcoin/comments/6h4**i/why\_*\_***d\*al*\_my*_eth*re*m\*today\*and*_*onve*te*\_it/**^1 7: twitter.com/*eistLi*h*/s*a*u*/*29*6475***801390***]^^4
Unknown links are censored to prevent spreading illicit content.
submitted by removalbot to removalbot [link] [comments]

BitOffer institute: Ethereum miners' daily earnings soared 60%, ETF earning over 85 times

BitOffer institute: Ethereum miners' daily earnings soared 60%, ETF earning over 85 times

https://preview.redd.it/95910ilvizd51.png?width=696&format=png&auto=webp&s=6681449d66d95faa67159454fe7faff49b4d7df8
On June 27, Ethereum miners earned about $1.85 per 100 (MH/s) per day. In the past month, especially in the last two weeks, the income rose by 60%, reaching a peak of $3.27 per 100 MH/s on July 25, before falling back to around $3.
Over the same period, the price of ETH has risen more than 40%, from $229 on June 27 to $327.99, which is a new high for 2020.
On July 22, the total market value of decentralized Financial DeFi passed $11.5 billion. The massive hype of DeFi caused a surge in trading volume in ETH, which, along with the surge in trading volume from ETH, pushed miners’ daily income to its highest level in two years.
Etherscan, a blockchain browser, shows that the entire computing power of the Ethereum blockchain, the world’s second-largest by market value, has been stable at around 190 petahash per second. Indeed, data from Bitinfocharts show that in the first quarter of this year, Ethereum’s daily mining revenue was below $2 per 100 MH/s before falling to $1 per 100 MH/s on March 12 after the cryptographic market collapsed. Ethereum’s daily mining revenues have tripled in recent months.
Currently, some of the most advanced ETH mining equipment, such as the core A10 Pro, which has a 500-megabit hash per second (MH/s) computing power and a power ratio of 1.9w/m, generates $13 per day at Ethereum’s current price and mining difficulty. Based on the miner’s profitability level, and A10 Pro Ethereum miner’s daily power consumption is about 1.1 dollars, and its daily net profit is nearly 12 dollars.
Even though bitcoin’s price topping $11,000 for the first time since September 2019, the difficulty of mining bitcoin remains at an all-time high. As a result, even the most efficient bitcoin miners, such as MicroBT’s WhatsMiner M30S ++ and Bitmaint’s AntMiner S19 Pro, generate $9 in daily income. Based on the current price of bitcoin and the difficulty of mining it, a more efficient Bitcoin miner (within 40w/T power ratio) generates about $6.50 in net profits per day. Ethereum miners earn about $13 a day, which is twice as Bitcoin miners.
Since the launch of DeFi, it has received a lot of attention from investment institutions and individual investors. Currently, DeFi Wallet has been downloaded more than 5,000 times, far more than any other type of DAPP, it is the number one DAPP developed based on Ethereum. According to the popularity and the current download speed, in the next few months, the downloading number will break through 6000 and bring a sufficient number of volumes for the ETH. Meanwhile, as the ETH 2.0 launch date approximation, these two advantages will boost the price of ETH, the income of the ETH miners will be at the appointed time with increased, which gradually widening the income gap with BTC miner.
It is the best time to invest in Ethereum.
However, buying BitOffer’s Ethereum ETF Ethereum is better than buying a future, in which profits start at a minimum of three times. Besides, it also includes an intelligent dynamic position reallocation mechanism and the calculation of fund compound interest with the returns of up to 17 times.
In the latest week, the Ethereum ETF (ETH3X) has jumped 160% from a peak of $6 to $16, according to data analysis from the BitOffer Exchange. With the launch of DeFi and ETH 2.0, once Ethereum rises more than fivefold over the next few months, the ETH3X could rise as much as 85 times.
If you buy Ethereum for $10,000, and ETH goes up fivefold, you can maximum make a fivefold profit, Which from $10,000 to $50,000. But buying ETH3X is a different story. Once Ethereum increases fivefold, you can make up to 85 times, which would be from $10,000 to $850,000, the 17 times than buying futures, more than over $800,000. Buying the Ethereum ETF would be a better deal.
submitted by Bitoffer_Official to BitOffer_Official [link] [comments]

Which are your Top 5 favourite coins out of the Top 100? An analysis.

I am putting together my investment portfolio for 2018 and made a complete summary of the current Top 100. Interestingly, I noticed that all coins can be categorized into 12 markets. Which markets do you think will play the biggest role in the coming year?
Here is a complete overview of all coins in an excel sheet including name, market, TPS, risk profile, time since launch (negative numbers mean that they are launching that many months in the future) and market cap. You can also sort by all of these fields of course. Coins written in bold are the strongest contenders within their market either due to having the best technology or having a small market cap and still excellent technology and potential. https://docs.google.com/spreadsheets/d/1s8PHcNvvjuy848q18py_CGcu8elRGQAUIf86EYh4QZo/edit#gid=0
The 12 markets are
  1. Currency 13 coins
  2. Platform 25 coins
  3. Ecosystem 9 coins
  4. Privacy 10 coins
  5. Currency Exchange Tool 8 coins
  6. Gaming & Gambling 5 coins
  7. Misc 15 coins
  8. Social Network 4 coins
  9. Fee Token 3 coins
  10. Decentralized Data Storage 4 coins
  11. Cloud Computing 3 coins
  12. Stable Coin 2 coins
Before we look at the individual markets, we need to take a look of the overall market and its biggest issue scalability first:
Cryptocurrencies aim to be a decentralized currency that can be used worldwide. Its goal is to replace dollar, Euro, Yen, all FIAT currencies worldwide. The coin that will achieve that will be worth several trillion dollars.
Bitcoin can only process 7 transactions per second (TPS). In order to replace all FIAT, it would need to perform at at least VISA levels, which usually processes around 3,000 TPS, up to 25,000 TPS during peak times and a maximum of 64,000 TPS. That means that this cryptocurrency would need to be able to perform at least several thousand TPS. However, a ground breaking technology should not look at current technology to set a goal for its use, i.e. estimating the number of emails sent in 1990 based on the number of faxes sent wasn’t a good estimate.
For that reason, 10,000 TPS is the absolute baseline for a cryptocurrency that wants to replace FIAT. This brings me to IOTA, which wants to connect all 80 billion IoT devices that are expected to exist by 2025, which constantly communicate with each other, creating 80 billion or more transactions per second. This is the benchmark that cryptocurrencies should be aiming for. Currently, 8 billion devices are connected to the Internet.
With its Lightning network recently launched, Bitcoin is realistically looking at 50,000 possible soon. Other notable cryptocurrencies besides IOTA and Bitcoin are Nano with 7,000 TPS already tested, Dash with several billion TPS possible with Masternodes, Neo, LISK and RHOC with 100,000 TPS by 2020, Ripple with 50,000 TPS, Ethereum with 10,000 with Sharding.
However, it needs to be said that scalability usually goes at the cost of decentralization and security. So, it needs to be seen, which of these technologies can prove itself resilient and performant.
Without further ado, here are the coins of the first market

Market 1 - Currency:

  1. Bitcoin: 1st generation blockchain with currently bad scalability currently, though the implementation of the Lightning Network looks promising and could alleviate most scalability concerns, scalability and high energy use.
  2. Ripple: Centralized currency that might become very successful due to tight involvement with banks and cross-border payments for financial institutions; banks and companies like Western Union and Moneygram (who they are currently working with) as customers customers. However, it seems they are aiming for more decentralization now.https://ripple.com/dev-blog/decentralization-strategy-update/. Has high TPS due to Proof of Correctness algorithm.
  3. Bitcoin Cash: Bitcoin fork with the difference of having an 8 times bigger block size, making it 8 times more scalable than Bitcoin currently. Further block size increases are planned. Only significant difference is bigger block size while big blocks lead to further problems that don't seem to do well beyond a few thousand TPS. Opponents to a block size argue that increasing the block size limit is unimaginative, offers only temporary relief, and damages decentralization by increasing costs of participation. In order to preserve decentralization, system requirements to participate should be kept low. To understand this, consider an extreme example: very big blocks (1GB+) would require data center level resources to validate the blockchain. This would preclude all but the wealthiest individuals from participating.Community seems more open than Bitcoin's though.
  4. Litecoin : Little brother of Bitcoin. Bitcoin fork with different mining algorithm but not much else.Copies everything that Bitcoin does pretty much. Lack of real innovation.
  5. Dash: Dash (Digital Cash) is a fork of Bitcoin and focuses on user ease. It has very fast transactions within seconds, low fees and uses Proof of Service from Masternodes for consensus. They are currently building a system called Evolution which will allow users to send money using usernames and merchants will find it easy to integrate Dash using the API. You could say Dash is trying to be a PayPal of cryptocurrencies. Currently, cryptocurrencies must choose between decentralization, speed, scalability and can pick only 2. With Masternodes, Dash picked speed and scalability at some cost of decentralization, since with Masternodes the voting power is shifted towards Masternodes, which are run by Dash users who own the most Dash.
  6. IOTA: 3rd generation blockchain called Tangle, which has a high scalability, no fees and instant transactions. IOTA aims to be the connective layer between all 80 billion IOT devices that are expected to be connected to the Internet in 2025, possibly creating 80 billion transactions per second or 800 billion TPS, who knows. However, it needs to be seen if the Tangle can keep up with this scalability and iron out its security issues that have not yet been completely resolved.
  7. Nano: 3rd generation blockchain called Block Lattice with high scalability, no fees and instant transactions. Unlike IOTA, Nano only wants to be a payment processor and nothing else, for now at least. With Nano, every user has their own blockchain and has to perform a small amount of computing for each transaction, which makes Nano perform at 300 TPS with no problems and 7,000 TPS have also been tested successfully. Very promising 3rd gen technology and strong focus on only being the fastest currency without trying to be everything.
  8. Decred: As mining operations have grown, Bitcoin’s decision-making process has become more centralized, with the largest mining companies holding large amounts of power over the Bitcoin improvement process. Decred focuses heavily on decentralization with their PoW Pos hybrid governance system to become what Bitcoin was set out to be. They will soon implement the Lightning Network to scale up. While there do not seem to be more differences to Bitcoin besides the novel hybrid consensus algorithm, which Ethereum, Aeternity and Bitcoin Atom are also implementing, the welcoming and positive Decred community and professoinal team add another level of potential to the coin.
  9. Aeternity: We’ve seen recently, that it’s difficult to scale the execution of smart contracts on the blockchain. Crypto Kitties is a great example. Something as simple as creating and trading unique assets on Ethereum bogged the network down when transaction volume soared. Ethereum and Zilliqa address this problem with Sharding. Aeternity focuses on increasing the scalability of smart contracts and dapps by moving smart contracts off-chain. Instead of running on the blockchain, smart contracts on Aeternity run in private state channels between the parties involved in the contracts. State channels are lines of communication between parties in a smart contract. They don’t touch the blockchain unless they need to for adjudication or transfer of value. Because they’re off-chain, state channel contracts can operate much more efficiently. They don’t need to pay the network for every time they compute and can also operate with greater privacy. An important aspect of smart contract and dapp development is access to outside data sources. This could mean checking the weather in London, score of a football game, or price of gold. Oracles provide access to data hosted outside the blockchain. In many blockchain projects, oracles represent a security risk and potential point of failure, since they tend to be singular, centralized data streams. Aeternity proposes decentralizing oracles with their oracle machine. Doing so would make outside data immutable and unchangeable once it reaches Aeternity’s blockchain. Of course, the data source could still be hacked, so Aeternity implements a prediction market where users can bet on the accuracy and honesty of incoming data from various oracles.It also uses prediction markets for various voting and verification purposes within the platform. Aeternity’s network runs on on a hybrid of proof of work and proof of stake. Founded by a long-time crypto-enthusiast and early colleague of Vitalik Buterin, Yanislav Malahov. Promising concept though not product yet
  10. Bitcoin Atom: Atomic Swaps and hybrid consenus. This looks like the only Bitcoin clone that actually is looking to innovate next to Bitcoin Cash.
  11. Dogecoin: Litecoin fork, fantastic community, though lagging behind a bit in technology.
  12. Bitcoin Gold: A bit better security than bitcoin through ASIC resistant algorithm, but that's it. Not that interesting.
  13. Digibyte: Digibyte's PoS blockchain is spread over a 100,000+ servers, phones, computers, and nodes across the globe, aiming for the ultimate level of decentralization. DigiByte rebalances the load between the five mining algorithms by adjusting the difficulty of each so one algorithm doesn’t become dominant. The algorithm's asymmetric difficulty has gained notoriety and been deployed in many other blockchains.DigiByte’s adoption over the past four years has been slow. It’s still a relatively obscure currency compared its competitors. The DigiByte website offers a lot of great marketing copy and buzzwords. However, there’s not much technical information about what they have planned for the future. You could say Digibyte is like Bitcoin, but with shorter blocktimes and a multi-algorithm. However, that's not really a difference big enough to truly set themselves apart from Bitcoin, since these technologies could be implemented by any blockchain without much difficulty. Their decentralization is probably their strongest asset, however, this also change quickly if the currency takes off and big miners decide to go into Digibyte.
  14. Bitcoin Diamond Asic resistant Bitcoin and Copycat

Market 2 - Platform

Most of the cryptos here have smart contracts and allow dapps (Decentralized apps) to be build on their platform and to use their token as an exchange of value between dapp services.
  1. Ethereum: 2nd generation blockchain that allows the use of smart contracts. Bad scalability currently, though this concern could be alleviated by the soon to be implemented Lightning Network aka Plasma and its Sharding concept.
  2. EOS: Promising technology that wants to be able do everything, from smart contracts like Ethereum, scalability similar to Nano with 1000 tx/second + near instant transactions and zero fees, to also wanting to be a platform for dapps. However, EOS doesn't have a product yet and everything is just promises still. Highly overvalued right now. However, there are lots of red flags, have dumped $500 million Ether over the last 2 months and possibly bought back EOS to increase the size of their ICO, which has been going on for over a year and has raised several billion dollars. All in all, their market cap is way too high for that and not even having a product.
  3. Cardano: Similar to Ethereum/EOS, however, only promises made with no delivery yet, highly overrated right now. Interesting concept though. Market cap way too high for not even having a product. Somewhat promising technology.
  4. VeChain: Singapore-based project that’s building a business enterprise platform and inventory tracking system. Examples are verifying genuine luxury goods and food supply chains. Has one of the strongest communities in the crypto world. Most hyped token of all, with merit though.
  5. Neo: Neo is a platform, similar to Eth, but more extensive, allowing dapps and smart contracts, but with a different smart contract gas system, consensus mechanism (PoS vs. dBfT), governance model, fixed vs unfixed supply, expensive contracts vs nearly free contracts, different ideologies for real world adoption. There are currently only 9 nodes, each of which are being run by a company/entity hand selected by the NEO council (most of which are located in china) and are under contract. This means that although the locations of the nodes may differ, ultimately the neo council can bring them down due to their legal contracts. In fact this has been done in the past when the neo council was moving 50 million neo that had been locked up. Also dbft (or neo's implmentation of it) has failed underload causing network outages during major icos. The first step in decentralization is that the NEO Counsel will select trusted nodes (Universities, business partners, etc.) and slowly become less centralized that way. The final step in decentralization will be allowing NEO holders to vote for new nodes, similar to a DPoS system (ARK/EOS/LISK). NEO has a regulation/government friendly ideology. Finally they are trying to work undewith the Chinese government in regards to regulations. If for some reason they wanted it shut down, they could just shut it down.
  6. Stellar: PoS system, similar goals as Ripple, but more of a platform than only a currency. 80% of Stellar are owned by Stellar.org still, making the currency centralized.
  7. Ethereum classic: Original Ethereum that decided not to fork after a hack. The Ethereum that we know is its fork. Uninteresing, because it has a lot of less resources than Ethereum now and a lot less community support.
  8. Ziliqa: Zilliqa is building a new way of sharding. 2400 tpx already tested, 10,000 tps soon possible by being linearly scalable with the number of nodes. That means, the more nodes, the faster the network gets. They are looking at implementing privacy as well.
  9. QTUM: Enables Smart contracts on the Bitcoin blockchain. Useful.
  10. Icon: Korean ethereum. Decentralized application platform that's building communities in partnership with banks, insurance providers, hospitals, and universities. Focused on ID verification and payments. No big differentiators to the other 20 Ethereums, except that is has a product. That is a plus. Maybe cheap alternative to Ethereum.
  11. LISK: Lisk's difference to other BaaS is that side chains are independent to the main chain and have to have their own nodes. Similar to neo whole allows dapps to deploy their blockchain to. However, Lisk is currently somewhat centralized with a small group of members owning more than 50% of the delegated positions. Lisk plans to change the consensus algorithm for that reason in the near future.
  12. Rchain: Similar to Ethereum with smart contract, though much more scalable at an expected 40,000 TPS and possible 100,000 TPS. Not launched yet. No product launched yet, though promising technology. Not overvalued, probably at the right price right now.
  13. ARDR: Similar to Lisk. Ardor is a public blockchain platform that will allow people to utilize the blockchain technology of Nxt through the use of child chains. A child chain, which is a ‘light’ blockchain that can be customized to a certain extent, is designed to allow easy self-deploy for your own blockchain. Nxt claims that users will "not need to worry" about security, as that part is now handled by the main chain (Ardor). This is the chief innovation of Ardor. Ardor was evolved from NXT by the same company. NEM started as a NXT clone.
  14. Ontology: Similar to Neo. Interesting coin
  15. Bytom: Bytom is an interactive protocol of multiple byte assets. Heterogeneous byte-assets (indigenous digital currency, digital assets) that operate in different forms on the Bytom Blockchain and atomic assets (warrants, securities, dividends, bonds, intelligence information, forecasting information and other information that exist in the physical world) can be registered, exchanged, gambled and engaged in other more complicated and contract-based interoperations via Bytom.
  16. Nxt: Similar to Lisk
  17. Stratis: Different to LISK, Stratis will allow businesses and organizations to create their own blockchain according to their own needs, but secured on the parent Stratis chain. Stratis’s simple interface will allow organizations to quickly and easily deploy and/or test blockchain functionality of the Ethereum, BitShares, BitCoin, Lisk and Stratis environements.
  18. Status: Status provides access to all of Ethereum’s decentralized applications (dapps) through an app on your smartphone. It opens the door to mass adoption of Ethereum dapps by targeting the fastest growing computer segment in the world – smartphone users.16. Ark: Fork of Lisk that focuses on a smaller feature set. Ark wallets can only vote for one delegate at a time which forces delegates to compete against each other and makes cartel formations incredibly hard, if not impossible.
  19. Neblio: Similar to Neo, but 30x smaller market cap.
  20. NEM: Is similar to Neo No marketing team, very high market cap for little clarilty what they do.
  21. Bancor: Bancor is a Decentralized Liquidity Network that allows you to hold any Ethereum token and convert it to any other token in the network, with no counter party, at an automatically calculated price, using a simple web wallet.
  22. Dragonchain: The Purpose of DragonChain is to help companies quickly and easily incorporate blockchain into their business applications. Many companies might be interested in making this transition because of the benefits associated with serving clients over a blockchain – increased efficiency and security for transactions, a reduction of costs from eliminating potential fraud and scams, etc.
  23. Skycoin: Transactions with zero fees that take apparently two seconds, unlimited transaction rate, no need for miners and block rewards, low power usage, all of the usual cryptocurrency technical vulnerabilities fixed, a consensus mechanism superior to anything that exists, resistant to all conceivable threats (government censorship, community infighting, cybenucleaconventional warfare, etc). Skycoin has their own consensus algorithm known as Obelisk written and published academically by an early developer of Ethereum. Obelisk is a non-energy intensive consensus algorithm based on a concept called ‘web of trust dynamics’ which is completely different to PoW, PoS, and their derivatives. Skywire, the flagship application of Skycoin, has the ambitious goal of decentralizing the internet at the hardware level and is about to begin the testnet in April. However, this is just one of the many facets of the Skycoin ecosystem. Skywire will not only provide decentralized bandwidth but also storage and computation, completing the holy trinity of commodities essential for the new internet. Skycion a smear campaign launched against it, though they seem legit and reliable. Thus, they are probably undervalued.

Market 3 - Ecosystem

The 3rd market with 11 coins is comprised of ecosystem coins, which aim to strengthen the ease of use within the crypto space through decentralized exchanges, open standards for apps and more
  1. Nebulas: Similar to how Google indexes webpages Nebulas will index blockchain projects, smart contracts & data using the Nebulas rank algorithm that sifts & sorts the data. Developers rewarded NAS to develop & deploy on NAS chain. Nebulas calls this developer incentive protocol – basically rewards are issued based on how often dapp/contract etc. is used, the more the better the rewards and Proof of devotion. Works like DPoS except the best, most economically incentivised developers (Bookkeeppers) get the forging spots. Ensuring brains stay with the project (Cross between PoI & PoS). 2,400 TPS+, DAG used to solve the inter-transaction dependencies in the PEE (Parallel Execution Environment) feature, first crypto Wallet that supports the Lightening Network.
  2. Waves: Decentralized exchange and crowdfunding platform. Let’s companies and projects to issue and manage their own digital coin tokens to raise money.
  3. Salt: Leveraging blockchain assets to secure cash loands. Plans to offer cash loans in traditional currencies, backed by your cryptocurrency assets. Allows lenders worldwide to skip credit checks for easier access to affordable loans.
  4. CHAINLINK: ChainLink is a decentralized oracle service, the first of its kind. Oracles are defined as an ‘agent’ that finds and verifies real-world occurrences and submits this information to a blockchain to be used in smart contracts.With ChainLink, smart contract users can use the network’s oracles to retrieve data from off-chain application program interfaces (APIs), data pools, and other resources and integrate them into the blockchain and smart contracts. Basically, ChainLink takes information that is external to blockchain applications and puts it on-chain. The difference to Aeternity is that Chainlink deploys the smart contracts on the Ethereum blockchain while Aeternity has its own chain.
  5. WTC: Combines blockchain with IoT to create a management system for supply chains Interesting
  6. Ethos unifyies all cryptos. Ethos is building a multi-cryptocurrency phone wallet. The team is also building an investment diversification tool and a social network
  7. Aion: Aion is the token that pays for services on the Aeternity platform.
  8. USDT: is no cryptocurrency really, but a replacement for dollar for trading After months of asking for proof of dollar backing, still no response from Tether.

Market 4 - Privacy

The 4th market are privacy coins. As you might know, Bitcoin is not anonymous. If the IRS or any other party asks an exchange who is the identity behind a specific Bitcoin address, they know who you are and can track back almost all of the Bitcoin transactions you have ever made and all your account balances. Privacy coins aim to prevent exactly that through address fungability, which changes addresses constantly, IP obfuscation and more. There are 2 types of privacy coins, one with completely privacy and one with optional privacy. Optional Privacy coins like Dash and Nav have the advantage of more user friendliness over completely privacy coins such as Monero and Enigma.
  1. Monero: Currently most popular privacy coin, though with a very high market cap. Since their privacy is all on chain, all prior transactions would be deanonymized if their protocol is ever cracked. This requires a quantum computing attack though. PIVX is better in that regard.
  2. Zcash: A decentralized and open-source cryptocurrency that hide the sender, recipient, and value of transactions. Offers users the option to make transactions public later for auditing. Decent privacy coin, though no default privacy
  3. Verge: Calls itself privacy coin without providing private transactions, multiple problems over the last weeks has a toxic community, and way too much hype for what they have.
  4. Bytecoin: First privacy-focused cryptocurrency with anonymous transactions. Bytecoin’s code was later adapted to create Monero, the more well-known anonymous cryptocurrency. Has several scam accusations, 80% pre-mine, bad devs, bad tech
  5. Bitcoin Private: A merge fork of Bitcoin and Zclassic with Zclassic being a fork of Zcash with the difference of a lack of a founders fee required to mine a valid block. This promotes a fair distribution, preventing centralized coin ownership and control. Bitcoin private offers the optional ability to keep the sender, receiver, and amount private in a given transaction. However, this is already offered by several good privacy coins (Monero, PIVX) and Bitcoin private doesn't offer much more beyond this.
  6. Komodo: The Komodo blockchain platform uses Komodo’s open-source cryptocurrency for doing transparent, anonymous, private, and fungible transactions. They are then made ultra-secure using Bitcoin’s blockchain via a Delayed Proof of Work (dPoW) protocol and decentralized crowdfunding (ICO) platform to remove middlemen from project funding. Offers services for startups to create and manage their own Blockchains.
  7. PIVX: As a fork of Dash, PIVX uses an advanced implementation of the Zerocoin protocol to provide it’s privacy. This is a form of zeroknowledge proofs, which allow users to spend ‘Zerocoins’ that have no link back to them. Unlike Zcash u have denominations in PIVX, so they can’t track users by their payment amount being equal to the amount of ‘minted’ coins, because everyone uses the same denominations. PIVX is also implementing Bulletproofs, just like Monero, and this will take care of arguably the biggest weakness of zeroknowledge protocols: the trusted setup.
  8. Zcoin: PoW cryptocurrency. Private financial transactions, enabled by the Zerocoin Protocol. Zcoin is the first full implementation of the Zerocoin Protocol, which allows users to have complete privacy via Zero-Knowledge cryptographic proofs.
  9. Enigma: Monero is to Bitcoin what enigma is to Ethereum. Enigma is for making the data used in smart contracts private. More of a platform for dapps than a currency like Monero. Very promising.
  10. Navcoin: Like bitcoin but with added privacy and pos and 1,170 tps, but only because of very short 30 second block times. Though, privacy is optional, but aims to be more user friendly than Monero. However, doesn't really decide if it wants to be a privacy coin or not. Same as Zcash.Strong technology, non-shady team.
  11. Tenx: Raised 80 million, offers cryptocurrency-linked credit cards that let you spend virtual money in real life. Developing a series of payment platforms to make spending cryptocurrency easier. However, the question is if full privacy coins will be hindered in growth through government regulations and optional privacy coins will become more successful through ease of use and no regulatory hindrance.

Market 5 - Currency Exchange Tool

Due to the sheer number of different cryptocurrencies, exchanging one currency for the other it still cumbersome. Further, merchants don’t want to deal with overcluttered options of accepting cryptocurrencies. This is where exchange tool like Req come in, which allow easy and simple exchange of currencies.
  1. Cryptonex: Fiat and currency exchange between various blockchain services, similar to REQ.
  2. QASH: Qash is used to fuel its liquid platform which will be an exchange that will distribute their liquidity pool. Its product, the Worldbook is a multi-exchange order book that matches crypto to crypto, and crypto to fiat and the reverse across all currencies. E.g., someone is selling Bitcoin is USD on exchange1 not owned by Quoine and someone is buying Bitcoin in EURO on exchange 2 not owned by Quoine. If the forex conversions and crypto conversions match then the trade will go through and the Worldbook will match it, it'll make the sale and the purchase on either exchange and each user will get what they wanted, which means exchanges with lower liquidity if they join the Worldbook will be able to fill orders and take trade fees they otherwise would miss out on.They turned it on to test it a few months ago for an hour or so and their exchange was the top exchange in the world by 4x volume for the day because all Worldbook trades ran through it. Binance wants BNB to be used on their one exchange. Qash wants their QASH token embedded in all of their partners. More info here https://www.reddit.com/CryptoCurrency/comments/8a8lnwhich_are_your_top_5_favourite_coins_out_of_the/dwyjcbb/?context=3
  3. Kyber: network Exchange between cryptocurrencies, similar to REQ. Features automatic coin conversions for payments. Also offers payment tools for developers and a cryptocurrency wallet.
  4. Achain: Building a boundless blockchain world like Req .
  5. Req: Exchange between cryptocurrencies.
  6. Bitshares: Exchange between cryptocurrencies. Noteworthy are the 1.5 second average block times and throughput potential of 100,000 transactions per second with currently 2,400 TPS having been proven. However, bitshares had several Scam accusations in the past.
  7. Loopring: A protocol that will enable higher liquidity between exchanges and personal wallets.
  8. ZRX: Open standard for dapps. Open, permissionless protocol allowing for ERC20 tokens to be traded on the Ethereum blockchain. In 0x protocol, orders are transported off-chain, massively reducing gas costs and eliminating blockchain bloat. Relayers help broadcast orders and collect a fee each time they facilitate a trade. Anyone can build a relayer.

Market 6 - Gaming

With an industry size of $108B worldwide, Gaming is one of the largest markets in the world. For sure, cryptocurrencies will want to have a share of that pie.
  1. Storm: Mobile game currency on a platform with 9 million players.
  2. Fun: A platform for casino operators to host trustless, provably-fair gambling through the use of smart contracts, as well as creating their own implementation of state channels for scalability.
  3. Electroneum: Mobile game currency They have lots of technical problems, such as several 51% attacks
  4. Wax: Marketplace to trade in-game items

Market 7 - Misc

There are various markets being tapped right now. They are all summed up under misc.
  1. OMG: Omise is designed to enable financial services for people without bank accounts. It works worldwide and with both traditional money and cryptocurrencies.
  2. Power ledger: Australian blockchain-based cryptocurrency and energy trading platform that allows for decentralized selling and buying of renewable energy. Unique market and rather untapped market in the crypto space.
  3. Populous: A platform that connects business owners and invoice buyers without middlemen. Invoice sellers get cash flow to fund their business and invoice buyers earn interest. Similar to OMG, small market.
  4. Monacoin: The first Japanese cryptocurrency. Focused on micro-transactions and based on a popular internet meme of a type-written cat. This makes it similar to Dogecoin. Very niche, tiny market.
  5. Revain: Legitimizing reviews via the blockchain. Interesting concept, though market not as big.
  6. Augur: Platform to forecast and make wagers on the outcome of real-world events (AKA decentralized predictions). Uses predictions for a “wisdom of the crowd” search engine. Not launched yet.
  7. Substratum: Revolutionzing hosting industry via per request billing as a decentralized internet hosting system. Uses a global network of private computers to create the free and open internet of the future. Participants earn cryptocurrency. Interesting concept.
  8. Veritaseum: Is supposed to be a peer to peer gateway, though it looks like very much like a scam.
  9. TRON: Tronix is looking to capitalize on ownership of internet data to content creators. However, they plagiarized their white paper, which is a no go. They apologized, so it needs to be seen how they will conduct themselves in the future. Extremely high market cap for not having a product, nor proof of concept.
  10. Syscoin: A cryptocurrency with a decentralized marketplace that lets people buy and sell products directly without third parties. Trying to remove middlemen like eBay and Amazon.
  11. Hshare: Most likely scam because of no code changes, most likely pump and dump scheme, dead community.
  12. BAT: An Ethereum-based token that can be exchanged between content creators, users, and advertisers. Decentralized ad-network that pays based on engagement and attention.
  13. Dent: Decentralizeed exchange of mobile data, enabling mobile data to be marketed, purchased or distributed, so that users can quickly buy or sell data from any user to another one.
  14. Ncash: End to end encrypted Identification system for retailers to better serve their customers .
  15. Factom Secure record-keeping system that allows companies to store their data directly on the Blockchain. The goal is to make records more transparent and trustworthy .

Market 8 - Social network

Web 2.0 is still going strong and Web 3.0 is not going to ignore it. There are several gaming tokens already out there and a few with decent traction already, such as Steem, which is Reddit with voting through money is a very interesting one.
  1. Mithril: As users create content via social media, they will be rewarded for their contribution, the better the contribution, the more they will earn
  2. Steem: Like Reddit, but voting with money. Already launched product and Alexa rank 1,000 Thumbs up.
  3. Rdd: Reddcoin makes the process of sending and receiving money fun and rewarding for everyone. Reddcoin is dedicated to one thing – tipping on social networks as a way to bring cryptocurrency awareness and experience to the general public.
  4. Kin: Token for the platform Kik. Kik has a massive user base of 400 million people. Replacing paying with FIAT with paying with KIN might get this token to mass adoption very quickly.

Market 9 - Fee token

Popular exchanges realized that they can make a few billion dollars more by launching their own token. Owning these tokens gives you a reduction of trading fees. Very handy and BNB (Binance Coin) has been one of the most resilient tokens, which have withstood most market drops over the last weeks and was among the very few coins that could show growth.
  1. BNB: Fee token for Binance
  2. Gas: Not a Fee token for an exchange, but it is a dividend paid out on Neo and a currency that can be used to purchase services for dapps.
  3. Kucoin: Fee token for Kucoin

Market 10 - Decentralized Data Storage

Currently, data storage happens with large companies or data centers that are prone to failure or losing data. Decentralized data storage makes loss of data almost impossible by distributing your files to numerous clients that hold tiny pieces of your data. Remember Torrents? Torrents use a peer-to-peer network. It is similar to that. Many users maintain copies of the same file, when someone wants a copy of that file, they send a request to the peer-to-peer network., users who have the file, known as seeds, send fragments of the file to the requester., he requester receives many fragments from many different seeds, and the torrent software recompiles these fragments to form the original file.
  1. Gbyte: Byteball data is stored and ordered using directed acyclic graph (DAG) rather than blockchain. This allows all users to secure each other's data by referencing earlier data units created by other users, and also removes scalability limits common for blockchains, such as blocksize issue.
  2. Siacoin: Siacoin is decentralized storage platform. Distributes encrypted files to thousands of private users who get paid for renting out their disk space. Anybody with siacoins can rent storage from hosts on Sia. This is accomplish via "smart" storage contracts stored on the Sia blockchain. The smart contract provides a payment to the host only after the host has kept the file for a given amount of time. If the host loses the file, the host does not get paid.
  3. Maidsafecoin: MaidSafe stands for Massive Array of Internet Disks, Secure Access for Everyone.Instead of working with data centers and servers that are common today and are vulnerable to data theft and monitoring, SAFE’s network uses advanced P2P technology to bring together the spare computing capacity of all SAFE users and create a global network. You can think of SAFE as a crowd-sourced internet. All data and applications reside in this network. It’s an autonomous network that automatically sets prices and distributes data and rents out hard drive disk space with a Blockchain-based storage solutions.When you upload a file to the network, such as a photo, it will be broken into pieces, hashed, and encrypted. The data is then randomly distributed across the network. Redundant copies of the data are created as well so that if someone storing your file turns off their computer, you will still have access to your data. And don’t worry, even with pieces of your data on other people’s computers, they won’t be able to read them. You can earn MadeSafeCoins by participating in storing data pieces from the network on your computer and thus earning a Proof of Resource.
  4. Storj: Storj aims to become a cloud storage platform that can’t be censored or monitored, or have downtime. Your files are encrypted, shredded into little pieces called 'shards', and stored in a decentralized network of computers around the globe. No one but you has a complete copy of your file, not even in an encrypted form.

Market 11 - Cloud computing

Obviously, renting computing power, one of the biggest emerging markets as of recent years, e.g. AWS and Digital Ocean, is also a service, which can be bought and managed via the blockchain.
  1. Golem: Allows easy use of Supercomputer in exchange for tokens. People worldwide can rent out their computers to the network and get paid for that service with Golem tokens.
  2. Elf: Allows easy use of Cloud computing in exchange for tokens.

Market 12 - Stablecoin

Last but not least, there are 2 stablecoins that have established themselves within the market. A stable coin is a coin that wants to be independent of the volatility of the crypto markets. This has worked out pretty well for Maker and DGD, accomplished through a carefully diversified currency fund and backing each token by 1g or real gold respectively. DO NOT CONFUSE DGD AND MAKER with their STABLE COINS DGX and DAI. DGD and MAKER are volatile, because they are the companies of DGX and DAI. DGX and DAI are the stable coins.
  1. DGD: Platform of the Stablecoin DGX. Every DGX coin is backed by 1g of gold and make use proof of asset consensus.
  2. Maker: Platform of the Stablecoin DAI that doesn't vary much in price through widespread and smart diversification of assets.
EDIT: Added a risk factor from 0 to 10. The baseline is 2 for any crypto. Significant scandals, mishaps, shady practices, questionable technology, increase the risk factor. Not having a product yet automatically means a risk factor of 6. Strong adoption and thus strong scrutiny or positive community lower the risk factor.
EDIT2: Added a subjective potential factor from 0 to 10, where its overall potential and a small or big market cap is factored in. Bitcoin with lots of potential only gets a 9, because of its massive market cap, because if Bitcoin goes 10x, smaller coins go 100x, PIVX gets a 10 for being as good as Monero while carrying a 10x smaller market cap, which would make PIVX go 100x if Monero goes 10x.
submitted by galan77 to CryptoCurrency [link] [comments]

Why has Bitcoin not being optimized for micropayments yet?

One of the most obvious advantages programmable digital money has over fiat money is the potential for efficient and fast micropayments. Pre-cryptocurrency financial systems have delays and overhead that could never support penny transactions of any quantity efficiently and in most cases cannot handle divisible pennies at all.
If Bitcoin encouraged small transactions today, completely new business models could appear overnight. The Internet already provides the basis for delivering digital services and resources efficiently in small quantities.
Why is the difficulty level of Bitcoin not adjusted to be relative to transaction size? This would allow thousands of tiny transactions to be quickly validated while keeping the proof-of-work high for larger transactions.
It seems a pity that an entire area of business where Bitcoin wouldn't just have an advantage, it would be the ONLY way to move forward, is being delayed in favor of other priorities that seem designed around competing more directly with fiat instead of leap frogging past it.
Reference: Bitcoin wiki
I must be missing something? A technological problem? Or an economic reason why crypto currency is not yet good enough for micro transactions? Enlighten me, please!
EDIT CONCLUSION:
After reading comments and following up on links I am convinced the solution for micropayments is very simple economics. If the hash difficulty of any block is proportional to the transaction value of that block then small transactions become cheap, which appears to be the main reason why microtransactions are not economically feasible now.
The ratio of proof-of-work difficulty to transaction value for small transactions would remain the same ratio as for large transactions, so the disincentivization for gaming the block chain would remain intact.
With identical economic return for validating many small transaction vs fewer large transactions, both small and large transactions will treated with equal priority by miners. For both small and large transactions dedicating a higher percentage of the transaction as a mining fee will incentivize prioritization equally. In other words, miners become agnostic to transaction size, but not to prioritization fees, which is both an egalitarian and economically efficient result.
One problem mentioned is of denial of service attacks. That will be a problem whenever transaction numbers increase, but reducing the mining difficulty for small transactions means that a flood of small transactions can be cleared more quickly, making small transactions less effective for DoS attacks than they would otherwise be. So this solution actually reduces both the cost and impact of DoS.
EDIT 2 ANOTHER BIG BENEFIT:
Another benefit of setting difficulty to transaction size is that smaller miners could stay independent but focus on clearing smaller transactions with a reduced block validation time, so would get much more statistically steady income. Smaller rewards but more frequently. This would eliminate a lot of the perverse incentives to centralize mining in a system where decentralization is a desired property.
submitted by nevermark to Bitcoin [link] [comments]

Which are your top 5 coins out of the top100? An analysis.

I am putting together my investment portfolio for 2018 and made a complete summary of the current Top 100. Interestingly, I noticed that all coins can be categorized into 12 markets. Which markets do you think will play the biggest role in the coming year?
Here is a complete overview of all coins in an excel sheet including name, a full description, market, TPS, risk profile, time since launch (negative numbers mean that they are launching that many months in the future) and market cap. You can also sort by all of these fields of course. Coins written in bold are the strongest contenders within their market either due to having the best technology or having a small market cap and still excellent technology and potential. https://docs.google.com/spreadsheets/d/1s8PHcNvvjuy848q18py_CGcu8elRGQAUIf86EYh4QZo/edit#gid=0
The 12 markets are
  1. Currency 13 coins
  2. Platform 25 coins
  3. Ecosystem 9 coins
  4. Privacy 9 coins
  5. Currency Exchange Tool 8 coins
  6. Gaming & Gambling 4 coins
  7. Misc 15 coins
  8. Social Network 4 coins
  9. Fee Token 3 coins
  10. Decentralized Data Storage 4 coins
  11. Cloud Computing 2 coins
  12. Stable Coin 3 coins
Before we look at the individual markets, we need to take a look of the overall market and its biggest issue, scalability, first:
Cryptocurrencies aim to be a decentralized currency that can be used worldwide. Their goal is to replace dollar, Euro, Yen, all FIAT currencies globally. The coin that will achieve that will be worth several trillion dollars.
Bitcoin can only process 7 transactions per second (TPS) currently. In order to replace all FIAT, it would need to perform at least at VISA levels, which usually processes around 3,000 TPS, up to 25,000 TPS during peak times and a maximum of 64,000 TPS. That means that this cryptocurrency would need to be able to perform at least several thousand TPS. However, a ground breaking technology should not look at current technology to set a goal for its use, i.e. estimating the number of emails sent in 1990 based on the number of faxes sent wasn’t a good estimate.
For that reason, 10,000 TPS is the absolute baseline for a cryptocurrency that wants to replace FIAT. This brings me to IOTA, which wants to connect all 80 billion IoT devices that are expected to exist by 2025, which constantly communicate with each other, possibly creating 80 billion or more transactions per second. This is the benchmark that cryptocurrencies should be aiming for. Currently, 8 billion devices are connected to the Internet.
With its Lightning network recently launched, Bitcoin is realistically looking at 50,000 possible TPS soon. Other notable cryptocurrencies besides IOTA and Bitcoin are Nano with 7,000 TPS already tested, Dash with several billion TPS possible with Masternodes, Neo, LISK and RHOC with 100,000 TPS by 2020, Ripple with 50,000 TPS, Ethereum with 10,000 TPS with Sharding.
However, it needs to be said that scalability usually goes at the cost of decentralization and security. So, it needs to be seen, which of these technologies can prove themselves decentralized while maintaining high TPS.
Without further ado, here are the coins of the first market. Each market is sorted by market cap.

Market 1 - Currency:

  1. Bitcoin: 1st generation blockchain with currently bad scalability, though the implementation of the Lightning Network looks promising and could alleviate most scalability and high energy use concerns.
  2. Ripple: Centralized currency that might become very successful due to tight involvement with banks and cross-border payments for financial institutions; banks and companies like Western Union and Moneygram (who they are currently working with) as customers customers. However, it seems they are aiming for more decentralization now.https://ripple.com/dev-blog/decentralization-strategy-update/. Has high TPS due to Proof of Correctness algorithm.
  3. Bitcoin Cash: Bitcoin fork with the difference of having an 8 times bigger block size, making it 8 times more scalable than Bitcoin currently. Further block size increases are planned. Only significant difference is bigger block size while big blocks lead to further problems that don't seem to do well beyond a few thousand TPS. Opponents to a block size argue that increasing the block size limit is unimaginative, offers only temporary relief, and damages decentralization by increasing costs of participation. In order to preserve decentralization, system requirements to participate should be kept low. To understand this, consider an extreme example: very big blocks (1GB+) would require data center level resources to validate the blockchain. This would preclude all but the wealthiest individuals from participating.Community seems more open than Bitcoin's though.
  4. Litecoin : Little brother of Bitcoin. Bitcoin fork with different mining algorithm but not much else.Copies everything that Bitcoin does pretty much. Lack of real innovation.
  5. Dash: Dash (Digital Cash) is a fork of Bitcoin and focuses on user ease. It has very fast transactions within seconds, low fees and uses Proof of Service from Masternodes for consensus. They are currently building a system called Evolution which will allow users to send money using usernames and merchants will find it easy to integrate Dash using the API. You could say Dash is trying to be a PayPal of cryptocurrencies. Currently, cryptocurrencies must choose between decentralization, speed, scalability and can pick only 2. With Masternodes, Dash picked speed and scalability at some cost of decentralization, since with Masternodes the voting power is shifted towards Masternodes, which are run by Dash users who own the most Dash.
  6. IOTA: 3rd generation blockchain called Tangle, which has a high scalability, no fees and instant transactions. IOTA aims to be the connective layer between all 80 billion IOT devices that are expected to be connected to the Internet in 2025, possibly creating 80 billion transactions per second or 800 billion TPS, who knows. However, it needs to be seen if the Tangle can keep up with this scalability and iron out its security issues that have not yet been completely resolved.
  7. Nano: 3rd generation blockchain called Block Lattice with high scalability, no fees and instant transactions. Unlike IOTA, Nano only wants to be a payment processor and nothing else, for now at least. With Nano, every user has their own blockchain and has to perform a small amount of computing for each transaction, which makes Nano perform at 300 TPS with no problems and 7,000 TPS have also been tested successfully. Very promising 3rd gen technology and strong focus on only being the fastest currency without trying to be everything.
  8. Decred: As mining operations have grown, Bitcoin’s decision-making process has become more centralized, with the largest mining companies holding large amounts of power over the Bitcoin improvement process. Decred focuses heavily on decentralization with their PoW Pos hybrid governance system to become what Bitcoin was set out to be. They will soon implement the Lightning Network to scale up. While there do not seem to be more differences to Bitcoin besides the novel hybrid consensus algorithm, which Ethereum, Aeternity and Bitcoin Atom are also implementing, the welcoming and positive Decred community and professoinal team add another level of potential to the coin.
  9. Bitcoin Atom: Atomic Swaps and hybrid consenus. This looks like the only Bitcoin clone that actually is looking to innovate next to Bitcoin Cash.
  10. Dogecoin: Litecoin fork, fantastic community, though lagging behind a bit in technology.
  11. Bitcoin Gold: A bit better security than bitcoin through ASIC resistant algorithm, but that's it. Not that interesting.
  12. Digibyte: Digibyte's PoS blockchain is spread over a 100,000+ servers, phones, computers, and nodes across the globe, aiming for the ultimate level of decentralization. DigiByte’s adoption over the past four years has been slow. The DigiByte website offers a lot of great marketing copy and buzzwords. However, there’s not much technical information about what they have planned for the future. You could say Digibyte is like Bitcoin, but with shorter blocktimes and a multi-algorithm. However, that's not really a difference big enough to truly set themselves apart from Bitcoin, since these technologies could be implemented by any blockchain without much difficulty. Their decentralization is probably their strongest asset, however, this also change quickly if the currency takes off and big miners decide to go into Digibyte.
  13. Bitcoin Diamond Asic resistant Bitcoin and Copycat

Market 2 - Platform

Most of the cryptos here have smart contracts and allow dapps (Decentralized apps) to be build on their platform and to use their token as an exchange of value between dapp services.
  1. Ethereum: 2nd generation blockchain that allows the use of smart contracts. Bad scalability currently, though this concern could be alleviated by the soon to be implemented Lightning Network aka the Raiden Network, Plasma and its Sharding concept.
  2. EOS: Promising technology that wants to be able do everything, from smart contracts like Ethereum, scalability similar to Nano with 1000 tx/second + near instant transactions and zero fees, to also wanting to be a platform for dapps. However, EOS doesn't have a product yet and everything is just promises still. There are lots of red flags, e.g. having dumped $500 million Ether over the last 2 months and possibly bought back EOS to increase the size of their ICO, which has been going on for over a year and has raised several billion dollars. All in all, their market cap is way too high for that and not even having a product. However, Mainnet release is in 1 month, which could change everything.
  3. Cardano: Similar to Ethereum/EOS, however, only promises made with no delivery yet, highly overrated right now. Interesting concept though. Market cap way too high for not even having a product. Somewhat promising technology.
  4. VeChain: Singapore-based project that’s building a business enterprise platform and inventory tracking system. Examples are verifying genuine luxury goods and food supply chains. Has one of the strongest communities in the crypto world. Most hyped token of all, with merit though.
  5. Neo: Neo is a platform, similar to Eth, but more extensive, allowing dapps and smart contracts, but with a different smart contract gas system, consensus mechanism (PoS vs. dBfT), governance model, fixed vs unfixed supply, expensive contracts vs nearly free contracts, different ideologies for real world adoption. There are currently only 9 nodes, each of which are being run by a company/entity hand selected by the NEO council (most of which are located in china) and are under contract. This means that although the locations of the nodes may differ, ultimately the neo council can bring them down due to their legal contracts. In fact this has been done in the past when the neo council was moving 50 million neo that had been locked up. Also dbft (or neo's implmentation of it) has failed underload causing network outages during major icos. The first step in decentralization is that the NEO Counsel will select trusted nodes (Universities, business partners, etc.) and slowly become less centralized that way. The final step in decentralization will be allowing NEO holders to vote for new nodes, similar to a DPoS system (ARK/EOS/LISK). NEO has a regulation/government friendly ideology. Finally they are trying to work undewith the Chinese government in regards to regulations. If for some reason they wanted it shut down, they could just shut it down.
  6. Stellar:PoS system, similar goals as Ripple, but more of a platform than only a currency. 80% of Stellar are owned by Stellar.org still, making the currency centralized.
  7. Ethereum classic: Original Ethereum that decided not to fork after a hack. The Ethereum that we know is its fork. Uninteresing, because it has a lot of less resources than Ethereum now and a lot less community support.
  8. Ziliqa: Zilliqa is building a new way of sharding. 2400 tpx already tested, 10,000 tps soon possible by being linearly scalable with the number of nodes. That means, the more nodes, the faster the network gets. They are looking at implementing privacy as well.
  9. QTUM: Enables Smart contracts on the Bitcoin blockchain. Useful.
  10. Icon: Korean ethereum. Decentralized application platform that's building communities in partnership with banks, insurance providers, hospitals, and universities. Focused on ID verification and payments.
  11. LISK: Lisk's difference to other BaaS is that side chains are independent to the main chain and have to have their own nodes. Similar to neo whole allows dapps to deploy their blockchain to. Like most cryptocurrencies, Lisk is currently somewhat centralized with a small group of members owning more than 50% of the delegated positions. Lisk plans to change the consensus algorithm for that reason in the near future.
  12. Rchain: Similar to Ethereum with smart contract, though much more scalable at an expected 40,000 TPS and possible 100,000 TPS. Not launched yet. No product launched yet, though promising technology. Not overvalued, probably at the right price right now.
  13. ARDR: Similar to Lisk. Ardor is a public blockchain platform that will allow people to utilize the blockchain technology of Nxt through the use of child chains. A child chain, which is a ‘light’ blockchain that can be customized to a certain extent, is designed to allow easy self-deploy for your own blockchain. Nxt claims that users will "not need to worry" about security, as that part is now handled by the main chain (Ardor). This is the chief innovation of Ardor. Ardor was evolved from NXT by the same company. NEM started as a NXT clone.
  14. Ontology: Similar to Neo. Interesting coin
  15. Bytom: Bytom is an interactive protocol of multiple byte assets. Heterogeneous byte-assets (indigenous digital currency, digital assets) that operate in different forms on the Bytom Blockchain and atomic assets (warrants, securities, dividends, bonds, intelligence information, forecasting information and other information that exist in the physical world) can be registered, exchanged, gambled and engaged in other more complicated and contract-based interoperations via Bytom.
  16. Nxt: Similar to Lisk
  17. Aeternity: We’ve seen recently, that it’s difficult to scale the execution of smart contracts on the blockchain. Crypto Kitties is a great example. Something as simple as creating and trading unique assets on Ethereum bogged the network down when transaction volume soared. Ethereum and Zilliqa address this problem with Sharding. Aeternity focuses on increasing the scalability of smart contracts and dapps by moving smart contracts off-chain. Instead of running on the blockchain, smart contracts on Aeternity run in private state channels between the parties involved in the contracts. State channels are lines of communication between parties in a smart contract. They don’t touch the blockchain unless they need to for adjudication or transfer of value. Because they’re off-chain, state channel contracts can operate much more efficiently. An important aspect of smart contract and dapp development is access to outside data sources. This could mean checking the weather in London, score of a football game, or price of gold. Oracles provide access to data hosted outside the blockchain. In many blockchain projects, oracles represent a security risk and potential point of failure, since they tend to be singular, centralized data streams. Aeternity proposes decentralizing oracles with their oracle machine. Doing so would make outside data immutable and unchangeable once it reaches Aeternity’s blockchain. Aeternity’s network runs on on a hybrid of proof of work and proof of stake. Founded by a long-time crypto-enthusiast and early colleague of Vitalik Buterin, Yanislav Malahov. Promising concept though not product yet
  18. Stratis: Different to LISK, Stratis will allow businesses and organizations to create their own blockchain according to their own needs, but secured on the parent Stratis chain. Stratis’s simple interface will allow organizations to quickly and easily deploy and/or test blockchain functionality of the Ethereum, BitShares, BitCoin, Lisk and Stratis environements.
  19. Status: Status provides access to all of Ethereum’s decentralized applications (dapps) through an app on your smartphone. It opens the door to mass adoption of Ethereum dapps by targeting the fastest growing computer segment in the world – smartphone users.
  20. Ark: Fork of Lisk that focuses on a smaller feature set. Ark wallets can only vote for one delegate at a time which forces delegates to compete against each other and makes cartel formations incredibly hard, if not impossible.
  21. Neblio: Similar to Neo, but at a 30x smaller market cap.
  22. NEM: Is similar to Neo. However, it has no marketing team, very high market cap for little clarilty what they do.
  23. Bancor: Bancor is a Decentralized Liquidity Network that allows you to hold any Ethereum token and convert it to any other token in the network, with no counter party, at an automatically calculated price, using a simple web wallet.
  24. Dragonchain: The Purpose of DragonChain is to help companies quickly and easily incorporate blockchain into their business applications. Many companies might be interested in making this transition because of the benefits associated with serving clients over a blockchain – increased efficiency and security for transactions, a reduction of costs from eliminating potential fraud and scams, etc.
  25. Skycoin: Transactions with zero fees that take apparently two seconds, unlimited transaction rate, no need for miners and block rewards, low power usage, all of the usual cryptocurrency technical vulnerabilities fixed, a consensus mechanism superior to anything that exists, resistant to all conceivable threats (government censorship, community infighting, cybenucleaconventional warfare, etc). Skycoin has their own consensus algorithm known as Obelisk written and published academically by an early developer of Ethereum. Obelisk is a non-energy intensive consensus algorithm based on a concept called ‘web of trust dynamics’ which is completely different to PoW, PoS, and their derivatives. Skywire, the flagship application of Skycoin, has the ambitious goal of decentralizing the internet at the hardware level and is about to begin the testnet in April. However, this is just one of the many facets of the Skycoin ecosystem. Skywire will not only provide decentralized bandwidth but also storage and computation, completing the holy trinity of commodities essential for the new internet. Skycion a smear campaign launched against it, though they seem legit and reliable. Thus, they are probably undervalued.

Market 3 - Ecosystem

The 3rd market with 11 coins is comprised of ecosystem coins, which aim to strengthen the ease of use within the crypto space through decentralized exchanges, open standards for apps and more
  1. Nebulas: Similar to how Google indexes webpages Nebulas will index blockchain projects, smart contracts & data using the Nebulas rank algorithm that sifts & sorts the data. Developers rewarded NAS to develop & deploy on NAS chain. Nebulas calls this developer incentive protocol – basically rewards are issued based on how often dapp/contract etc. is used, the more the better the rewards and Proof of devotion. Works like DPoS except the best, most economically incentivised developers (Bookkeeppers) get the forging spots. Ensuring brains stay with the project (Cross between PoI & PoS). 2,400 TPS+, DAG used to solve the inter-transaction dependencies in the PEE (Parallel Execution Environment) feature, first crypto Wallet that supports the Lightening Network.
  2. Waves: Decentralized exchange and crowdfunding platform. Let’s companies and projects to issue and manage their own digital coin tokens to raise money.
  3. Salt: Leveraging blockchain assets to secure cash loands. Plans to offer cash loans in traditional currencies, backed by your cryptocurrency assets. Allows lenders worldwide to skip credit checks for easier access to affordable loans.
  4. CHAINLINK: ChainLink is a decentralized oracle service, the first of its kind. Oracles are defined as an ‘agent’ that finds and verifies real-world occurrences and submits this information to a blockchain to be used in smart contracts.With ChainLink, smart contract users can use the network’s oracles to retrieve data from off-chain application program interfaces (APIs), data pools, and other resources and integrate them into the blockchain and smart contracts. Basically, ChainLink takes information that is external to blockchain applications and puts it on-chain. The difference to Aeternity is that Chainlink deploys the smart contracts on the Ethereum blockchain while Aeternity has its own chain.
  5. WTC: Combines blockchain with IoT to create a management system for supply chains Interesting
  6. Ethos unifyies all cryptos. Ethos is building a multi-cryptocurrency phone wallet. The team is also building an investment diversification tool and a social network
  7. Komodo: The Komodo blockchain platform uses Komodo’s open-source cryptocurrency for doing transparent, anonymous, private, and fungible transactions. They are then made ultra-secure using Bitcoin’s blockchain via a Delayed Proof of Work (dPoW) protocol and decentralized crowdfunding (ICO) platform to remove middlemen from project funding. Offers services for startups to create and manage their own Blockchains.
  8. Aion: Today, there are hundreds of blockchains. In the coming years, with widespread adoption by mainstream business and government, these will be thousands or millions. Blockchains don’t talk to each other at all right now, they are like the PCs of the 1980s. The Aion network is able to support custom blockchain architectures while still allowing for cross-chain interoperability by enabling users to exchange data between any Aion-compliant blockchains by making use of an interchain framework that allows for messages to be relayed between blockchains in a completely trust-free manner.
  9. Tenx: Raised 80 million, offers cryptocurrency-linked credit cards that let you spend virtual money in real life. Developing a series of payment platforms to make spending cryptocurrency easier.

Market 4 - Privacy

The 4th market are privacy coins. As you might know, Bitcoin is not anonymous. If the IRS or any other party asks an exchange who is the identity behind a specific Bitcoin address, they know who you are and can track back almost all of the Bitcoin transactions you have ever made and all your account balances. Privacy coins aim to prevent exactly that through address fungability, which changes addresses constantly, IP obfuscation and more. There are 2 types of privacy coins, one with completely privacy and one with optional privacy. Optional Privacy coins like Dash and Nav have the advantage of more user friendliness over completely privacy coins such as Monero and Enigma.
  1. Monero: Currently most popular privacy coin, though with a very high market cap. Since their privacy is all on chain, all prior transactions would be deanonymized if their protocol is ever cracked. This requires a quantum computing attack though. PIVX is better in that regard.
  2. Zcash: A decentralized and open-source cryptocurrency that hide the sender, recipient, and value of transactions. Offers users the option to make transactions public later for auditing. Decent privacy coin, though no default privacy
  3. Verge: Calls itself privacy coin without providing private transactions, multiple problems over the last weeks has a toxic community, and way too much hype for what they have.
  4. Bytecoin: First privacy-focused cryptocurrency with anonymous transactions. Bytecoin’s code was later adapted to create Monero, the more well-known anonymous cryptocurrency. Has several scam accusations, 80% pre-mine, bad devs, bad tech
  5. Bitcoin Private: A merge fork of Bitcoin and Zclassic with Zclassic being a fork of Zcash with the difference of a lack of a founders fee required to mine a valid block. This promotes a fair distribution, preventing centralized coin ownership and control. Bitcoin private offers the optional ability to keep the sender, receiver, and amount private in a given transaction. However, this is already offered by several good privacy coins (Monero, PIVX) and Bitcoin private doesn't offer much more beyond this.
  6. PIVX: As a fork of Dash, PIVX uses an advanced implementation of the Zerocoin protocol to provide it’s privacy. This is a form of zeroknowledge proofs, which allow users to spend ‘Zerocoins’ that have no link back to them. Unlike Zcash u have denominations in PIVX, so they can’t track users by their payment amount being equal to the amount of ‘minted’ coins, because everyone uses the same denominations. PIVX is also implementing Bulletproofs, just like Monero, and this will take care of arguably the biggest weakness of zeroknowledge protocols: the trusted setup.
  7. Zcoin: PoW cryptocurrency. Private financial transactions, enabled by the Zerocoin Protocol. Zcoin is the first full implementation of the Zerocoin Protocol, which allows users to have complete privacy via Zero-Knowledge cryptographic proofs.
  8. Enigma: Monero is to Bitcoin what enigma is to Ethereum. Enigma is for making the data used in smart contracts private. More of a platform for dapps than a currency like Monero. Very promising.
  9. Navcoin: Like bitcoin but with added privacy and pos and 1,170 tps, but only because of very short 30 second block times. Though, privacy is optional, but aims to be more user friendly than Monero. However, doesn't really decide if it wants to be a privacy coin or not. Same as Zcash.Strong technology, non-shady team.

Market 5 - Currency Exchange Tool

Due to the sheer number of different cryptocurrencies, exchanging one currency for the other it still cumbersome. Further, merchants don’t want to deal with overcluttered options of accepting cryptocurrencies. This is where exchange tool like Req come in, which allow easy and simple exchange of currencies.
  1. Cryptonex: Fiat and currency exchange between various blockchain services, similar to REQ.
  2. QASH: Qash is used to fuel its liquid platform which will be an exchange that will distribute their liquidity pool. Its product, the Worldbook is a multi-exchange order book that matches crypto to crypto, and crypto to fiat and the reverse across all currencies. E.g., someone is selling Bitcoin is USD on exchange1 not owned by Quoine and someone is buying Bitcoin in EURO on exchange 2 not owned by Quoine. They turned it on to test it a few months ago for an hour or so and their exchange was the top exchange in the world by 4x volume for the day because all Worldbook trades ran through it. Binance wants BNB to be used on their one exchange. Qash wants their QASH token embedded in all of their partners.
  3. Kyber: network Exchange between cryptocurrencies, similar to REQ. Features automatic coin conversions for payments. Also offers payment tools for developers and a cryptocurrency wallet.
  4. Achain: Building a boundless blockchain world like Req .
  5. Centrality: Centrality is a decentralized market place for dapps that are all connected together on a blockchain-powered system. Centrality aims to allow businesses to work together using blockchain technology. With Centrality, startups can collaborate through shared acquisition of customers, data, merchants, and content. That shared acquisition occurs across the Centrality blockchain, which hosts a number of decentralized apps called Scenes. Companies can use CENTRA tokens to purchase Scenes for their app, then leverage the power of the Centrality ecosystem to quickly scale. Some of Centrality's top dapps are, Skoot, a travel experience marketplace that consists of a virtual companion designed for free independent travelers and inbound visitors, Belong, a marketplace and an employee engagement platform that seems at helping business provide rewards for employees, Merge, a smart travel app that acts as a time management system, Ushare, a transports application that works across rental cars, public transport, taxi services, electric bikes and more. All of these dapps are able to communicate with each other and exchange data through Centrality.
  6. Bitshares: Exchange between cryptocurrencies. Noteworthy are the 1.5 second average block times and throughput potential of 100,000 transactions per second with currently 2,400 TPS having been proven. However, Bitshares had several Scam accusations in the past.
  7. Loopring: A protocol that will enable higher liquidity between exchanges and personal wallets by pooling all orders sent to its network and fill these orders through the order books of multiple exchanges. When using Loopring, traders never have to deposit funds into an exchange to begin trading. Even with decentralized exchanges like Ether Delta, IDex, or Bitshares, you’d have to deposit your funds onto the platform, usually via an Ethereum smart contract. But with Loopring, funds always remain in user wallets and are never locked by orders. This gives you complete autonomy over your funds while trading, allowing you to cancel, trim, or increase an order before it is executed.
  8. ZRX: Open standard for dapps. Open, permissionless protocol allowing for ERC20 tokens to be traded on the Ethereum blockchain. In 0x protocol, orders are transported off-chain, massively reducing gas costs and eliminating blockchain bloat. Relayers help broadcast orders and collect a fee each time they facilitate a trade. Anyone can build a relayer.

Market 6 - Gaming

With an industry size of $108B worldwide, Gaming is one of the largest markets in the world. For sure, cryptocurrencies will want to have a share of that pie.
  1. Storm: Mobile game currency on a platform with 9 million players.
  2. Fun: A platform for casino operators to host trustless, provably-fair gambling through the use of smart contracts, as well as creating their own implementation of state channels for scalability.
  3. Electroneum: Mobile game currency They have lots of technical problems, such as several 51% attacks
  4. Wax: Marketplace to trade in-game items

Market 7 - Misc

There are various markets being tapped right now. They are all summed up under misc.
  1. OMG: Omise is designed to enable financial services for people without bank accounts. It works worldwide and with both traditional money and cryptocurrencies.
  2. Power ledger: Australian blockchain-based cryptocurrency and energy trading platform that allows for decentralized selling and buying of renewable energy. Unique market and rather untapped market in the crypto space.
  3. Populous: Populous is a platform that connects business owners and invoice buyers without middlemen. Furthermore, it is a peer-to-peer (P2P) platform that uses blockchain to provide small and medium-sized enterprises (SMEs) a more efficient way to participate in invoice financing. Businesses can sell their outstanding invoices at a discount to quickly free up some cash. Invoice sellers get cash flow to fund their business and invoice buyers earn interest.
  4. Monacoin: The first Japanese cryptocurrency. Focused on micro-transactions and based on a popular internet meme of a type-written cat. This makes it similar to Dogecoin. Very niche, tiny market.
  5. Revain: Legitimizing reviews via the blockchain. Interesting concept, though market not as big.
  6. Augur: Platform to forecast and make wagers on the outcome of real-world events (AKA decentralized predictions). Uses predictions for a “wisdom of the crowd” search engine. Not launched yet.
  7. Substratum: Revolutionzing hosting industry via per request billing as a decentralized internet hosting system. Uses a global network of private computers to create the free and open internet of the future. Participants earn cryptocurrency. Interesting concept.
  8. Veritaseum: Is supposed to be a peer to peer gateway, though it looks like very much like a scam.
  9. TRON: Tronix is looking to capitalize on ownership of internet data to content creators. However, they plagiarized their white paper, which is a no go. They apologized, so it needs to be seen how they will conduct themselves in the future. Extremely high market cap for not having a product, nor proof of concept.
  10. Syscoin: A cryptocurrency with a decentralized marketplace that lets people buy and sell products directly without third parties. Trying to remove middlemen like eBay and Amazon.
  11. Hshare: Most likely scam because of no code changes, most likely pump and dump scheme, dead community.
  12. BAT: An Ethereum-based token that can be exchanged between content creators, users, and advertisers. Decentralized ad-network that pays based on engagement and attention.
  13. Dent: Decentralizeed exchange of mobile data, enabling mobile data to be marketed, purchased or distributed, so that users can quickly buy or sell data from any user to another one.
  14. Ncash: End to end encrypted Identification system for retailers to better serve their customers .
  15. Factom Secure record-keeping system that allows companies to store their data directly on the Blockchain. The goal is to make records more transparent and trustworthy .

Market 8 - Social network

Web 2.0 is still going strong and Web 3.0 is not going to ignore it. There are several gaming tokens already out there and a few with decent traction already, such as Steem, which is Reddit with voting through money is a very interesting one.
  1. Mithril: As users create content via social media, they will be rewarded for their contribution, the better the contribution, the more they will earn
  2. Steem: Like Reddit, but voting with money. Already launched product and Alexa rank 1,000 Thumbs up.
  3. Rdd: Reddcoin makes the process of sending and receiving money fun and rewarding for everyone. Reddcoin is dedicated to one thing – tipping on social networks as a way to bring cryptocurrency awareness and experience to the general public.
  4. Kin: Token for the platform Kik. Kik has a massive user base of 400 million people. Replacing paying with FIAT with paying with KIN might get this token to mass adoption very quickly.

Market 9 - Fee token

Popular exchanges realized that they can make a few billion dollars more by launching their own token. Owning these tokens gives you a reduction of trading fees. Very handy and BNB (Binance Coin) has been one of the most resilient tokens, which have withstood most market drops over the last weeks and was among the very few coins that could show growth.
  1. BNB: Fee token for Binance
  2. Gas: Not a Fee token for an exchange, but it is a dividend paid out on Neo and a currency that can be used to purchase services for dapps.
  3. Kucoin: Fee token for Kucoin

Market 10 - Decentralized Data Storage

Currently, data storage happens with large companies or data centers that are prone to failure or losing data. Decentralized data storage makes loss of data almost impossible by distributing your files to numerous clients that hold tiny pieces of your data. Remember Torrents? Torrents use a peer-to-peer network. It is similar to that. Many users maintain copies of the same file, when someone wants a copy of that file, they send a request to the peer-to-peer network., users who have the file, known as seeds, send fragments of the file to the requester. The requester receives many fragments from many different seeds, and the torrent software recompiles these fragments to form the original file.
  1. Gbyte: Byteball data is stored and ordered using directed acyclic graph (DAG) rather than blockchain. This allows all users to secure each other's data by referencing earlier data units created by other users, and also removes scalability limits common for blockchains, such as blocksize issue.
  2. Siacoin: Siacoin is decentralized storage platform. Distributes encrypted files to thousands of private users who get paid for renting out their disk space. Anybody with siacoins can rent storage from hosts on Sia. This is accomplish via "smart" storage contracts stored on the Sia blockchain. The smart contract provides a payment to the host only after the host has kept the file for a given amount of time. If the host loses the file, the host does not get paid.
  3. Maidsafecoin: MaidSafe stands for Massive Array of Internet Disks, Secure Access for Everyone.Instead of working with data centers and servers that are common today and are vulnerable to data theft and monitoring, You can think of SAFE as a crowd-sourced internet. It’s an autonomous network that automatically sets prices and distributes data and rents out hard drive disk space with a Blockchain-based storage solutions.When you upload a file to the network, such as a photo, it will be broken into pieces, hashed, and encrypted. Then, redundant copies of the data are created as well so that if someone storing your file turns off their computer, you will still have access to your data. And don’t worry, even with pieces of your data on other people’s computers, they won’t be able to read them. You can earn MadeSafeCoins by participating in storing data pieces from the network on your computer and thus earning a Proof of Resource.
  4. Storj: Storj aims to become a cloud storage platform that can’t be censored or monitored, or have downtime. Your files are encrypted, shredded into little pieces called 'shards', and stored in a decentralized network of computers around the globe. No one but you has a complete copy of your file, not even in an encrypted form.

Market 11 - Cloud computing

Obviously, renting computing power, one of the biggest emerging markets as of recent years, e.g. AWS and Digital Ocean, is also a service, which can be bought and managed via the blockchain.
  1. Golem: Allows easy use of Supercomputer in exchange for tokens. People worldwide can rent out their computers to the network and get paid for that service with Golem tokens.
  2. Elf: Allows easy use of Cloud computing in exchange for tokens.

Market 12 - Stablecoin

Last but not least, there are 2 stablecoins that have established themselves within the market. A stable coin is a coin that wants to be independent of the volatility of the crypto markets. This has worked out pretty well for Maker and DGD, accomplished through a carefully diversified currency fund and backing each token by 1g or real gold respectively. DO NOT CONFUSE DGD AND MAKER with their STABLE COINS DGX and DAI. DGD and MAKER are volatile, because they are the companies of DGX and DAI. DGX and DAI are the stable coins.
  1. DGD: Platform of the Stablecoin DGX. Every DGX coin is backed by 1g of gold and make use proof of asset consensus.
  2. Maker: Platform of the Stablecoin DAI that doesn't vary much in price through widespread and smart diversification of assets.
  3. USDT: is no cryptocurrency really, but a replacement for dollar for trading After months of asking for proof of dollar backing, still no response from Tether.
EDIT: Added a risk factor from 0 to 10. Significant scandals, mishaps, shady practices, questionable technology, increase the risk factor. Not having a product yet automatically means a risk factor of 6. Strong adoption and thus strong scrutiny or positive community lower the risk factor.
EDIT2: Added a subjective potential factor from 0 to 10, where its overall potential and a small or big market cap is factored in. Bitcoin with lots of potential only gets a 9, because of its massive market cap, because if Bitcoin goes 10x, smaller coins go 100x.
submitted by galan77 to ethtrader [link] [comments]

IOTA, and When to Expect the COO to be Removed

Hello All,
This post is meant to address the elephant in the room, and the #1 criticism that IOTA gets which is the existence of the Coordinator node.
The Coordinator or, COO for short, is a special piece of software that is operated by the IOTA Foundation. This software's function is to drop "milestone" transactions onto the Tangle that help in ordering of Transactions.
As this wonderful post on reddit highlights (https://www.reddit.com/Iota/comments/7c3qu8/coordinator_explained/)
When you want to know if a transaction is verified, you find the newest Milestone and you see if it indirectly verifies your transaction (i.e it verifies your transaction, or if verifies a transaction that verifies your transaction, or if it verifies a transaction that verifies a transaction that verifies your transaction, etc). The reason that the Milestones exist is because if you just picked any random transaction, there's the possibility that the node you're connected to is malicious and is trying to trick you into verifying its transactions. The people who operate nodes can't fake the signatures on Milestones, so you know you can trust the Milestones to be legit.
The COO protects the network, that is great right?
No, it is not.
The coordinator represents a centralized entity that draws the ire of the concurrency community in general is the reason behind a lot of FUD.
Here is where things get dicey. If you ask the IOTA Foundation, the last official response I heard was
We are running super computer simulations with the University of St. Peteresburg to determine when that could be a possibility.
This answer didn't satisfy me, so I've spent the last few weeks thinking about the problem and think I can explain the challenges that the IOTA Foundation are up against, what they expect to model with the super computer simulations, and what ultimately what my intuition (backed up by some back of the napkin mathematics) tells me that outcomes will be.
In order to understand the bounds of the problem, we first need to understand what our measuring stick is.
Our measuring stick provides measurements with respect to hashed per second. A hash, is a mathematical operation that blockchain (and DAG) based applications require before accepting your transaction. This is generally thought of as an anti-spam measure used to protect a blockchain network.
IOTA and Bitcoin share some things in common, and one of those things is that they both require Proof of Work in order to interact with the blockchain.
In IOTA, a single hash is completed for each Transaction that you submit. You complete this PoW at the time of submitting your Transaction, and you never revisit it again.
In Bitcoin, hashes are guessed at by millions of computers (miners) competing to be the first person to find solve the correct hash, and ultimately mint a new block.
Because of the competitive nature of the bitcoin mining mechanism, the bitcoin hashrate is a sustained hashrate, while the IOTA hashrate is "bursty" going through peaks and valleys as new transactions are submitted.
Essentially, IOTA performance is a function of the current throughput of the network. While, bitcoin's performance is a delicate balance between all collective miners, the hashing difficulty with the goal of pegging the block time to 10 minutes.
With all that said, I hope it is clear that we can come to the following conclusion.
The amount of CPU time required to compute 1 Bitcoin hash is much much greater then the amount of CPU time required to compute 1 IOTA hash.
T(BtcHash) >> T(IotaHash)
After all, low powered IOT devices are supposed to be able to execute the IOTA hashing function in order to submit their own transactions.
A "hash" has be looked at as an amount of work that needs to be completed. If you are solving a bitcoin hash, it will take a lot more work to solve then an IOTA hash.
When we want to measure IOTA, we usually look at "Transactions Per Second". Since each Transaction requires a single Hash to be completed, we can translate this measurement into "Hashes Per Second" that the entire network supports.
IOTA has seen Transactions Per Second on the order of magnitude of <100. That means, that at current adoption levels the IOTA network is supported and secured by 100 IOTA hashes per second (on a very good day).
Bitcoin hashes are much more difficult to solve. The bitcoin network is secured by 1 Bitcoin hash every 10 minutes (which adjust's it's difficult over time to remain pegged at 10 minutes). (More details on bitcoin mining: https://www.coindesk.com/information/how-bitcoin-mining-works/)
Without the COOs protection, IOTA would be a juicy target destroy. With only 100 IOTA hashes per second securing the network, that means that an individual would only need to maintain a sustained 34 hashes per second in order to completely take over the network.
Personally, my relatively moderate gaming PC takes about 60 seconds to solve IOTA Proof of Work before my transaction will be submitted to the Tangle. This is not a beastly machine, nor does it utilize specialized hardware to solve my Proof of Work. This gaming PC cost about $1000 to build, and provides me .0166 hashes per second.
**Using this figure, we can derive that consumer electronics provide hashing efficiency of roughly $60,000 USD / Hash / Second ($60k per hash per second) on the IOTA network.
Given that the Tx/Second of IOTA is around 100 on a good day, and it requires $60,000 USD to acquire 1Hash/Second of computing power we would need 34 * $60,000 to attack the IOTA network.
The total amount of money required to 34% the IOTA project is $2,040,00
This is a very small number. Not only that, but the hash rate required to conduct such an attack already exists, and it is likely that this attack has already been attempted.
The simple truth is, that due to the economic incentive of mining the hash rate required to attack IOTA is already centralized, and are foaming at the mouth to attack IOTA. This is why the Coordinator exists, and why it will not be going anywhere anytime soon.
The most important thing that needs to occur to remove the COO, is that the native measurement of transactions per second (which ultimately also measures the hashes per second) need to go drastically up in orders of magnitude.
If the IOTA transaction volume were to increase to 1000 transactions per second, then it would require 340 transactions per second from a malicious actor to compromise the network. In order to complete 340 transactions per second, the attacker would need now need the economic power of 340 * $60,000 to 34% attack the IOTA network.
In this hypothetical scenario, the cost of attacking the IOTA network is $20,400,000. This number is still pretty small, but at least you can see the pattern. IOTA will likely need to hit many-thousand transactions per second before it can be considered secure.
What we have to keep in mind here, is that IOTA has an ace up their sleeve, and that Ace is JINN Labs and the ternary processor that they are working on.
Ultimately, JINN is the end-game for the IOTA project that will make the removal of the COO a reality.
In order to understand what JINN is, we need to understand a little bit about computer architecture and the nature of computational instruction in general.
A "processor" is a piece of hardware that performs micro calculations. These micro calculations are usually very simple, such as adding two numbers, subtracting two numbers, incrementing, decrementing, and the like. The operation that is completed (addition, subtraction) is called the opcode while the numbers being operated on are called the operands.
Traditional processors, like the ones you find in my "regular gaming PC" are binary processors where both the opcode and operands are expected to be binary numbers (or a collection of 0s and 1s).
The JINN processor, provides the same functionality, mainly a hardware implementation of micro instructions. However, it expects the opcodes and operands to be ternary numbers (or a collection of 0s, 1s, and 2s).
I won't get into the computational data density of base 2 vs. base 3 processors, nor will get I get into the energy efficiency of those processors. What I will be getting into however, is how certain tasks are simpler to solve in certain number systems.
Depending on what operations are being executed upon the operands, performing the calculation in a different base will actually reduce the amount of steps required, and thus the execution time of the calculation. For an example, see how base 12 has been argued to be superior to base 10 (https://io9.gizmodo.com/5977095/why-we-should-switch-to-a-base-12-counting-system)
I want to be clear here. I am not saying that any 1 number system is superior to any other number system for all types of operations. I am simply saying, that there exist certain types of calculations that are easier to perform in base 2, then they are performed in base 10. Likewise, there are calculations that are vastly simpler in base 3 then they are in base 2.
The IOTA POW, and the algorithms required to solve for it is one of these algorithms. The IOTA PoW was designed to be ternary in nature, and I suggest that this is the reason right here. The data density and electricity savings that JINN provides are great, but the real design decision that has led to base 3 has been that they can now manufacture hardware that is superior at solving their own PoW calculations.
Binary emulation, is when a binary processor is asked to perform ternary operations. A binary processor is completely able to solve ternary hashes, but in order to do so it will need to emulate the ternary micro instructions at a higher level in the application stack from away from the hardware.
If you had access to a base 3 processor, and needed perform a base 3 addition operation you could easily ask your processor to natively perform that calculation.
If all you have access to, is a base 2 processor, you would need to emulate a base 3 number system in software. This would ultimately result in a higher number of instructions passing through your processor, more electricity being utilized, more time to complete.
Finally, let's review these figures.
It costs roughly $60k to acquire 1hash per second in BASE 2 consumer electrictronic. It costs roughly $2M to acquire enough BASE 2 hash rate to 34% the IOTA network.
JINN, will be specifically manufactured hardware that will solve base 3 hashes natively. What this likely means, is that $1 spent on JINN will be much more effective at acquiring base 3 hash rate then $1 spent on base 2 hash rate.
Finally, with bitcoin and traditional block chain applications there lies economic incentive to amass mining hardware.
It first starts out by a miner earning income from his mining rig. He then reinvests those profits on additional hardware to increase his income.
Eventually, this spirals into an arms raise where the players that are left in the game have increasingly available resources up until the point that there are only a handful of players left.
This economic incentive, creates a mass centralization of computing resources capable of being misused in a coordinated effort to attack a cryptocurrency.
IOTA aims to break this economic incentive, and the centralization that is causes. However, over the short term the fact that the centralization of such resources does exist is an existential peril to IOTA, and the COO is an inconvenient truth that we all have to live with.
Due to all the above, I think we can come to the following conclusions:
  1. IOTA will not be able to remove the COO until the transactions per second (and ultimately hashrate) increase by orders of magnitude.
  2. The performance of JINN processors, and their advantage of being able to compute natively on ternary operands and opcodes will be important for the value ratio of $USD / hash rate on the IOTA network
  3. Existing mining hardware is at a fundamental disadvantage to computing base 3 hashes when compared to a JINN processor designed specifically for that function
  4. Attrition of centralized base 2 hash power will occur if the practice of mining can be defeated and the income related to it. Then the incentive of amassing a huge amount of centralized computing power will be reduced.
  5. JINN processors, and their adoption in consume electronics (like cell phones and cars) hold the key in being able to provide enough "bursty" hash rate to defend the network from 34% attacks without the help of the COO.
  6. What are the super computer simulations? I think they are simulating a few things. They are modeling tip selection algorithms to reduce the amount of unverified transactions, however I think they may also be performing some simulations regarding the above calculations. JINN processors have not been released yet, so the performance benchmarks, manufacturing costs, retail costs, and adoption rates are all variables that I cannot account for. The IF probably has much better insight into all of those figures, which will allow them to better understand when the techno-economic environment would be conducive to the disabling of the COO.
  7. The COO will likely be decentralized before it is removed. With all this taken into account, the date that the COO will be removed is years off if I was forced to guess. This means, that decentralizing the COO itself would be a sufficient stop-gap to the centralized COO that we see today.
submitted by localhost87 to Iota [link] [comments]

Bitcoin Mining Power Hits New High as Half a Million New ASICs Go Online

Bitcoin Mining Power Hits New High as Half a Million New ASICs Go Online


News by Coindesk: Wolfie Zhao
The computing power dedicated to mining bitcoin has hit yet another new high, suggesting that more than 600,000 powerful new machines may have come online in the last three months.
According to data from crypto mining pool BTC.com, bitcoin’s two-week average hash rate has crossed another major threshold, reaching 85 exahashes per second (EH/s) around 19:00 UTC last Friday. Meanwhile, mining difficulty also adjusted to a new record of nearly 12 trillion.
Notably, both figures have jumped 60 percent since June 14, the data shows.
Bitcoin’s mining difficulty — a measure of how hard it is to create a block of transactions — adjusts after 2,016 blocks, or roughly every two weeks. This is to ensure the time to produce a block remains around 10 minutes, even as the amount of hashing power, deployed by machines around the globe competing to win freshly minted bitcoins, fluctuates.
Several new models of application-specific integrated circuit (ASIC) miners hit the market over the summer, with an average hashing power around 55 tera hashes per second (TH/s).
Assuming all of the 35 EH/s of new hashing power added since mid-June came from these top-of-the-line models, a back-of-the-envelope calculation suggests that more than half a million such machines have connected to the bitcoin network. (1 EH/s =1 million TH/s)

Billion-dollar business?

These powerful ASIC miners, made by major manufacturers such as Bitmain, Canaan, InnoSilicon and MicroBT, are priced from $1,500 to $2,500 each. So if more than half a million of them were delivered, as estimated above, the leading miner makers could have made $1 billion in revenue over the past three months.
Bitcoin’s spiking hash rate and difficulty are in line with the soaring price since earlier this year, which led to increasing demand for mining equipment that has significantly outstripped supply. It’s also in part thanks to the rainy summer season in southwestern China which resulted in cheap, abundant hydroelectric power.
Further, there has also been a growing interest in Russia’s Eastern Siberia region, where the Brastsk hydropower station built in the Cold War era has been utilized to power mining farms that are estimated to account for almost 10 percent of the total computing power on the bitcoin network.
Miners in China estimated earlier this year that bitcoin’s average hash rate in the summer would break the level of 70 EH/s, which happened in August.
As such, major miner manufacturers have already sold out equipment that is due for shipment until the end of the year with customers placing pre-orders three months in advance.
TokenInsight, a startup that focuses on analysis of crypto trading and mining activities, said in a report published Friday that additional supplies of miners are expected to hit the market in the coming months.
“Following the drastic increase in bitcoin’s price, the bitcoin mining market saw significant inflation in Q2 2019. Most of the miners from various manufacturers were in serious shortage and pre-orders submitted in Q2 and Q3 are to be delivered by the end of the year,” the report states.
Therefore, the firm estimates mining difficulty will maintain its growth momentum to reach 15 trillion by the end of the year — with bitcoin’s average total hashing power crossing the threshold of 100 EH/s for the first time in its history.
Bitcoin mining facility image courtesy of Bcause
submitted by GTE_IO to u/GTE_IO [link] [comments]

"POS stands for the future? Qtum brings deep analysis"

Each cryptocurrency will adopt some kind of consensus mechanism so that the entire distributed network can maintain synchronization. Bitcoin adopted the Proof of Work (PoW) consensus mechanism from the very beginning of its birth to achieve proof of workload through continuous digital cryptographic hash operations. Since the hashing algorithm is unidirectional, even a small change in the input data will make the output hash value completely different. If the calculated hash value satisfies certain conditions (referred to as "mining difficulty"), participants in the bitcoin network identify the workload proof. Mining difficulty is an ever-changing hash target. When the speed of network-generated blocks becomes faster, the difficulty is automatically increased to maintain the average of the entire network every 10 minutes.
 
Definition
For those who are not very familiar with the blockchain, here are some basic definitions to help understand the post:
 
PoW and Blockchain Consensus System
Through 8 years of development of Bitcoin, the security of the PoW mechanism has been confirmed. However, PoW has the following problems:
 
  1. PoW has wasted a lot of power resources and is not friendly to the environment;
  2. PoW is only economically advantageous for big people who have a lot of power (normal users can hardly mine into mines);
  3. PoW lacks incentives for users to hold or use coins;
  4. PoW has a certain risk of centralization, because miners tend to join large pools, which makes large pools have a greater influence on the network;
 
The right to benefit prove mechanism (Proof of Stake, hereinafter referred to as PoS) can solve a lot of problems among this, because it enables any user with tokens in your wallet can have the opportunity to dig mine (of course, will get mining reward). The PoS was originally proposed by Sunny King in Peercoin. It was later refined and adopted in a variety of cryptocurrencies. Among these are PoS Vasin's PoS 2.0, Larry Ren's PoS Velocity, and the recent CASPER proposed by Vlad Zamfir, as well as various other relatively unknown projects.
 
The consensus mechanism adopted by Qtum is based on PoS3.0. PoS3.0 is an upgraded version of PoS2.0, also proposed and implemented by Pavel Vasin. This article will focus on this version of the PoS implementation. Qtum made some changes based on PoS3.0, but the core consensus mechanism is basically the same.
 
For general community members and even some developers, PoS is not particularly easy to understand because there are currently fewer documents detailing how to ensure network security in networks that use only token ownership to achieve consensus. This article will elaborate on how to generate, verify, and secure the PoS blockchain in PoS3.0. The article may involve some technical knowledge, but I will try to describe it with some of the basic definitions provided in this article. But at least the reader needs to have a basic idea of ​​a UTXO-based blockchain.
 
Before introducing PoS, let me briefly introduce PoW's working mechanism, which can help the following understanding of PoS. The PoW mining process can be represented by the following pseudocode:  
While(blockhash > difficulty) { Block.nonce = block.nonce + 1 Blockhash = sha256(sha256(block)) } 
 
The hash operation used here I explained earlier, that is, to use arbitrary length data as input, after a series of operations, get a fixed-length information digest as an output, but only know the information digest but it is impossible to reverse the corresponding input data . The whole process is a lot like the lottery winning mechanism. You can create a “voucher” by hashing the data and compare it with the target hash range to determine if you “win”. If you don't win, you can create a new "voucher" again by slightly changing some of the data. The random number nonce in Bitcoin is used to adjust the input data. Once the required hash is found, the block is legitimate and can be broadcast to a distributed network. Once the other miners in the network receive this new block message and pass the verification, they will add the block to the chain and continue to build the block after the new block.
 
PoS protocol structure and rules
 
Now we begin to introduce PoS. PoS has the following goals :
  1. Cannot fake blocks;
  2. "Large households" will not receive much disproportionately large rewards;
  3. Having strong computing power does not help create blocks;
  4. No one or several members of the network can control the entire blockchain;
The basic concept of PoS is very similar to PoW, and it is like a lottery. The only difference is that PoS can't get new "lotteries" just by fine-tuning the input data, PoW uses "block hash" as lottery ticket, and PoS introduces the concept of "kernel hash".
The Kernel hash takes as input multiple unmodifiable data in the current block. So, because the miners can't find a simple way to modify the kernal hash, they can't get legal through a lot of traversal of the possible hash.New block.
 
In order to achieve this goal, PoS added many additional consensus rules.
First, unlike PoW, the PoS's coinbase transaction (that is, the first transaction in the block) has zero output. At the same time, in order to reward Staker, a staking transaction was introduced as the second transaction of the block. The staking transaction has the following features:
  1. There are at least 1 legal vin
  2. The first vout must be empty script
  3. The second vout must not be empty
 
In addition, staking transactions must also obey the following rules :
  1. The second vout must be a pubkey script (note that it is not pubkeyhash) or an OP_RETURN script that cannot be used to save data on the chain;
  2. The timestamp in the transaction must be consistent with the block timestamp;
  3. The total output value of the staking transaction must be less than or equal to the sum of all input values, PoS block awards, and transaction fees (ie output <= (input + block_reward + tx_fees));
  4. The output corresponding to the first vin must pass the confirmation of at least 500 blocks (that is, the currency spent needs at least 500 blocks to confirm);
  5. Although the staking transaction can have multiple input vins, only the first vin is used for the consensus mechanism;
 
These rules make it easy to identify the staking transaction, thus ensuring that it can provide enough information to verify the block. It should be noted here that the first vout is not the only way to identify the staking transaction, but since the PoS3.0 designer Sunny King started using this method, and proved its reliability in long-term practice, so we have also adopted this method to identify staking transactions.
 
Now that we know the definition of the staking transaction and we understand the rules that it must follow, let's introduce the rules of the PoS block :
 
The most important of these rules for PoS is the "kernal hash". The role of the kernel hash is similar to that of the block hash in PoW. That is, if the hash value matches the condition, the block is considered valid. However, kernal hash cannot be obtained by directly modifying part of the current block. Next, I will first introduce the structure and operating mechanism of kernal hash, and then further explain the purpose of this design, and if you change the unforeseen consequences of this design will bring.
 
Kernel Hash in PoS
The kernal hash consists of the following data in order as input:
 
The "skate modifier" of a block refers to the hash value of the following data:
There are only two ways to change the current kernel hash (for mining), either change "prevout" or change the current block time.
 
In general, a wallet will contain multiple UTXOs. The balance of the wallet is actually the sum of all available UTXOs in the current wallet. This is also applicable in PoS wallets and is even more important because arbitrary output may be used for staking. One of these outputs will be the prevout in the staking transaction, which will be used to generate a valid block.
 
In addition, there is one more important change in the PoS block mining process (compared to PoW), which is that the difficulty of mining is inversely proportional to the number of coins owned (rather than the number of UTXOs). For example, a wallet with 2 coins is only half the difficulty of mining. If it is not designed this way, users will be encouraged to generate many UTXOs with small micro-regulations, which will cause the block size to become larger and may cause some security problems.
 
The calculation of kernal hash can be expressed in pseudo-code as:
While(true){ Foreach(utxo in wallet){ blockTime = currentTime - currentTime % 16 posDifficulty = difficulty * utxo.value Hash = hash(previousStakeModifier << utxo.time << utxo.hash << utxo.n << blockTime) If(hash < posDifficulty){ Done } } Wait 16s -- wait 16 seconds, until the block time can be changed } 
 
Through the above process, we find that one of the UTXOs can be used to generate a staking transaction. This staking transaction has 1 vin, the UTXO we found. At the same time this staking transaction has at least two vouts, the first one is empty, which is used to identify the blockchain, the second vout is an OP_RETURN transaction containing only one public key, or contains the pay-to-pub-key script. The role of the latter is relatively pure (payment), and data transactions can have more uses (such as an independent block signature machine) without destroying the original UTXO model.
 
Finally, all transactions in the mempool will be added to the block. What we need to do next is generate the signature. This signature must use the public key corresponding to the second vout of the staking transaction. The actual transaction data is calculated by block hash. After signing, we can broadcast this block to the network. Other nodes in the network will verify the block. If the block is valid, the node will accept the block and connect it to its own blockchain while broadcasting the new block to other nodes it connects to.
 
Through the above steps, we can get a complete and secure PoS3.0 blockchain. PoS3.0 is considered to be the best consensus mechanism against malicious attacks in a fully decentralized consensus system. Why is this conclusion? We can understand the history of PoS development.
 
The development of PoS
PoS has a long history. Here is a brief description:
 
PoS1.0 — Applied in Peercoin , heavily dependent on coin age (ie, the time elapsed since UTXO was spent), the higher the coin age, the lower the difficulty of mining. This has the side effect that the user will choose to open a wallet for a long period of time (for example, one month or longer), so that the UTXO of the wallet will have a relatively large currency and the user can quickly find a new block. This will lead to double-spend attacks more easily. Peercoin itself is not affected by this, because it uses PoW and PoS mixing mechanisms, and PoW can reduce this negative effect.
 
PoS2.0 — The coin age was removed from the consensus mechanism and a different stake modifier was used than PoS1.0. The contents of the amendments are relatively numerous, but basically they are all about how to remove the coin age and realize the security consensus mechanism without using the PoW/PoS hybrid mode.
 
PoS3.0 — PoS3.0 can actually be said to be an upgraded version of PoS2.0. In PoS2.0, the snapshot modifier also contains the block time of the previous block, which was removed in 3.0, mainly to prevent the so-called "short-range" attack, that is, it is possible to change the previous area by traversing. Block time to traverse mining. PoS2.0 uses block time and transaction time to determine the age of UTXO, which is slightly different from the previous coinage age. It indicates that a UTXO can be used for the minimum number of confirmations required by staking. The UTXO age in PoS 3.0 becomes simpler, it is determined by the height of the block. This avoids the introduction of a less accurate timestamp in the blockchain and can effectively immunize the "timewarp" attack. PoS3.0 also adds OP_RETURN support for staking transactions, making voutYou can include only the public key, not necessarily the full pay-to-pubkey script.
 
Original:https://mp.weixin.qq.com/s/BRPuRn7iOoqeWbMiqXI11g
submitted by thisthingismud to Qtum [link] [comments]

Bitcoin Trading Robot ➨ Way Better Than Mining/Harvesting Bitcoins Bitcoin hack download free blockchain software 2019 Hashflare January 2018 Discount Code FREE BITCOIN MINER! 500$+ in 10 minutes! + Download Bitcoin hack download free blockchain software 2020

Accurate Bitcoin mining calculator trusted by millions of cryptocurrency miners since May 2013 - developed by an OG Bitcoin miner looking to maximize on mining profits and calculate ROI for new ASIC miners. Updated in 2020, the newest version of the Bitcoin mining calculator makes it simple and easy to quickly calculate mining profitability for your Bitcoin mining hardware. Learn why CryptoMining.Tools is the best free bitcoin mining calculator available to mining enthusiasts and professionals today. MicroBitcoin mining calculator for PoWer2b: Price 0.000019020000$, 0.0066 difficulty, 465.9939 KH/s network hashrate, 4,574.80 MBC block reward. MicroBitcoin mining pools list and list of best mining software. Many have adopted the practice of referring to the micro-bitcoin metric sub-unit as "bits". Table of all units. This table is intended to include all well-defined units of bitcoin value, including less common and niche units. Unit Abbreviation Decimal (BTC) Alternate names Info Algorithmic maximum : 20,999,999.9769 Calculation: tam-bitcoin : 2,814,749.76710656 : 1,0000,0000 tonal mega-bitcoin ... he CoinDesk Bitcoin Calculator converts bitcoin into any world currency using the Bitcoin Price Index, including USD, GBP, EUR, CNY, JPY, and more.

[index] [23212] [5556] [13472] [29749] [13537] [49225] [2424] [25013] [32441] [4730]

Bitcoin Trading Robot ➨ Way Better Than Mining/Harvesting Bitcoins

For more information: https://www.bitcoinmining.com and https://www.weusecoins.com What is Bitcoin Mining? Have you ever wondered how Bitcoin is generated? T... #bitcoin calculator #bitcoin converter #bitcoin price history #how much is a bitcoin #bitcoin current value #btc value #btc price usd #bitcoin worth #bitcoin stock price #btc to usd converter #buy ... #bitcoin mining calculator 2019 #bitcoin mining difficulty 2019. Category Education; Suggested by HAAWK for a 3rd Party Monetize Your Music Today! Identifyy Content ID Administration. Song Dark ... Some Helpful Links: • Buy Parts for a Mining Rig: http://amzn.to/2jSSsCz • Download NiceHash Miner: https://www.nicehash.com/?p=nhmintro • Choose a Wallet: h... Many people wonder how the price of Bitcoin is calculated, but it’s important to remember that it works no different than it would with other currencies or objects. Let’s first look at how the ...

#